DOI QR코드

DOI QR Code

Dynamic analysis of magnetorheological elastomer sandwich MEMS sensor under magnetic field

  • Akhavan, Hossein (Faculty of Engineering, Department of Mechanics, Imam Khomeini International University) ;
  • Ehyaei, Javad (Faculty of Engineering, Department of Mechanics, Imam Khomeini International University) ;
  • Ghadiri, Majid (Faculty of Engineering, Department of Mechanics, Imam Khomeini International University)
  • Received : 2020.07.30
  • Accepted : 2022.02.23
  • Published : 2022.05.25

Abstract

In this paper, the effect of magnetic field on the vibration behavior of a Magnetorheological elastomer (MRE) sandwich MEMS actuated by electrostatic actuation with conductive skins are examined within the multiple scales (MMS) perturbation method. Magnetorheological smart materials have been widely used in vibration control of various systems due to their mechanical properties change under the influence of different magnetic fields. To investigate the vibrational behavior of the movable electrode, the Euler-Bernoulli beam theory, as well as Hamilton's principle is used to derive the equations and the related boundary conditions governing the dynamic behavior of the system are applied. The results of this study show that by placing the Magnetorheological elastomer core in the movable electrode and applying different magnetic fields on it, its natural vibrational frequency can be affected so that by increasing the applied magnetic field, the system's natural frequency increases. Also, the effect of various factors such as the electric potential difference between two electrodes, changes in the thickness of the core and the skins, electrode length, the distance between two electrodes and also change in vibration modes of the system on natural frequencies have been investigated.

Keywords

References

  1. Abbasnejad, B. and Rezazadeh, G. (2012), "Mechanical behavior of a FGM micro-beam subjected to a nonlinear electrostatic pressure", Int. J. Mech. Mater. Des., 8(4), 381-392. https://doi.org/10.1007/s10999-012-9202-x.
  2. Arumugam, A.B., Ramamoorthy, M. and Rajamohan, V. (2019), "Dynamic characterization and parametric instability analysis of rotating magnetorheological fluid composite sandwich plate subjected to periodic in-plane loading", J. Sandw. Struct. Mater., 21(6), 2099-2126. https://doi.org/10.1177/1099636218762690.
  3. Akhavan, H., Ghadiri, M. and Zajkani, A. (2019), "A new model for the cantilever MEMS actuator in magnetorheological elastomer cored sandwich form considering the fringing field and Casimir effects", Mech. Syst. Signal Pr., 121, 551-561. https://doi.org/10.1016/j.ymssp.2018.11.046.
  4. Asgari, M., Rayyat Rokn-Abadi, M., Yousefi, M. and Haddadpour, H. (2019), "Aeroelastic analysis of a sandwich panel with partially treated magneto-rheological fluid core", J. Intel. Mater. Syst. Struct., 30(1), 140-154. https://doi.org/10.1177/1045389X18803462.
  5. Dai, H.L., Wang, L. and Ni, Q. (2015), "Dynamics and pull-in instability of electrostatically actuated microbeams conveying fluid", Microfluid. Nanofluid., 18(1), 49-55. https://doi.org/10.1007/s10404-014-1407-x.
  6. De Souza Eloy, F., Gomes, G.F., Ancelotti Jr. A.C., Da Cunha Jr. S.S., Bombard, A.J.F. and Junqueira, D.M. (2019), "A numerical-experimental dynamic analysis of composite sandwich beam with magnetorheological elastomer honeycomb core", Compos. Struct., 209, 242-257. https://doi.org/10.1016/j.compstruct.2018.10.041.
  7. Farrokhabadi, A., Mohebshahedin, A., Rach, R. and Duan, J.S. (2016), "An improved model for the cantilever NEMS actuator including the surface energy, fringing field and Casimir effectstrs", Phys. E Low Dimen. Syst. Nanouct., 75, 202-209. https://doi.org/10.1016/j.physe.2015.09.033.
  8. Gorgani, H.H., Adeli, M.M. and Hosseini, M. (2019), "Pull-in behavior of functionally graded micro/nano-beams for MEMS and NEMS switches", Microsyst. Technol., 25(8), 3165-3173. https://doi.org/10.1007/s00542-018-4216-4.
  9. Guoliang, H., Miao, G. and Weihua, L. (2011), "Analysis of vibration characteristics of magnetorheological elastomer sandwich beam under non-homogeneous magnetic field", Appl. Mech. Mater., 101-102, 202-206. https://doi.org/10.4028/www.scientific.net/AMM.101-102.202.
  10. Hasheminejad, S.M., Parvasi, S.M. and Fadavi-Ardakani, A. (2016), "Vibroacoustic analysis and response suppression of a rectangular sandwich electrorheological panel", Int. J. Acoust. Vib., 21(1), 81-92. https://doi.org/10.20855/ijav.2016.21.1398.
  11. Hu, G., Guo, M., Li, W., Du, H. and Alici, G. (2011), "Experimental investigation of the vibration characteristics of a magnetorheological elastomer sandwich beam under non-homogeneous small magnetic fields", Smart Mater. Struct., 20(12), 127001. https://doi.org/10.1088/0964-1726/20/12/127001.
  12. Huang, J.M., Liew, K.M., Wong, C.H., Rajendran, S., Tan, M.J. and Liu, A.Q. (2001), "Mechanical design and optimization of capacitive micromachined switch", Sensor. Actuat. A Phys., 93(3), 273-285. https://doi.org/10.1016/S0924-4247(01)00662-8.
  13. Hu, Y.C., Chang, C.M. and Huang, S.C. (2004), "Some design considerations on the electrostatically actuated microstructures", Sensor. Actuat. A Phys., 112(1), 155-161. https://doi.org/10.1016/j.sna.2003.12.012.
  14. Lee, S.B. and Loeppert, P.V. (2002), "An impedance spectroscopic study of MEMS microphones", SENSORS, 2, 1250-1255. https://doi.org/10.1109/ICSENS.2002.1037295.
  15. Lin, R.M. and Wang, W.J. (2006), "Structural dynamics of microsystems-Current state of research and future directions", Mech. Syst. Signal Pr., 20(5), 1015-1043. https://doi.org/10.1016/j.ymssp.2005.08.013.
  16. Mikhasev, G.I., Eremeyev, V.A., Wilde, K. and Maevskaya, S.S. (2019), "Assessment of dynamic characteristics of thin cylindrical sandwich panels with magnetorheological core", J. Intel. Mater. Syst. Struct., 30(18-19), 2748-2769. https://doi.org/10.1177/1045389X19873423.
  17. Mohammadi, M., Eghtesad, M. and Mohammadi, H. (2018), "Stochastic analysis of pull-in instability of geometrically nonlinear size-dependent FGM micro beams with random material properties", Compos. Struct., 200, 466-479. https://doi.org/10.1016/j.compstruct.2018.05.089.
  18. Nayak, B., Dwivedy, S.K. and Murthy, K.S.R.K. (2011), "Dynamic analysis of magnetorheological elastomer-based sandwich beam with conductive skins under various boundary conditions", J. Sound Vib., 330(9), 1837-1859. https://doi.org/10.1016/j.jsv.2010.10.041.
  19. Naito, Y. and Uenishi, K. (2019), "Electrostatic MEMS Vibration Energy Harvesters inside of Tire Treads", Sensor., 19(4), 890. https://doi.org/10.3390/s19040890.
  20. Ozevin, D. (2020), "MEMS acoustic emission sensors", Appl. Sci., 10(24), 8966. https://doi.org/10.3390/app10248966.
  21. Pallay, M., Daeichin, M. and Towfighian, S. (2017), "Dynamic behavior of an electrostatic MEMS resonator with repulsive actuation", Nonlin. Dyn., 89(2), 1525-1538. https://doi.org/10.1007/s11071-017-3532-z.
  22. Paulech, J., Murin, J., Kutis, V. and Galik, G. (2019), "Analysis of FGM actuator structure using new multiphysical finite elements", AIP Conf. Proc., 2131(1), 020034. https://doi.org/10.1063/1.5119487.
  23. Priyandoko, G., Kurniawan, T. and Soffie, S.M. (2018), "Vibration control of magnetorheological elastomer beam sandwich", Proc. Electr. Eng. Comput. Sci. Inform., 5(5), 341-344. https://doi.org/10.11591/eecsi.v5.1629.
  24. Siahpour, S., Zand, M.M. and Mousavi, M. (2018), "Dynamics and vibrations of particle-sensing MEMS considering thermal and electrostatic actuation", Microsyst. Technol., 24(3), 1545-1552. https://doi.org/10.1007/s00542-017-3554-y.
  25. Soleymani, T. and Arani, A.G. (2019), "On aeroelastic stability of a piezo-MRE sandwich plate in supersonic airflow", Compos. Struct., 230, 111532. https://doi.org/10.1016/j.compstruct.2019.111532.
  26. Sun, Y., Cheng, J., Wang, Z., Yu, Y., Tian, L. and Lu, J. (2019), "Analytical approximate solution for nonlinear behavior of cantilever FGM MEMS beam with thermal and size dependency", Math. Prob. Eng., 2019(4), 1-10. https://doi.org/10.1155/2019/9637048.
  27. Sun, Q., Zhou, J. and Zhang, L. (2003), "An adaptive beam model and dynamic characteristics of magnetorheological materials", J. Sound Vib., 261(3), 465-481. https://doi.org/10.1016/S0022-460X(02)00985-9.
  28. Wang, Q., Wang, W., Zhuang, X., Zhou, C. and Fan, B. (2021), "Development of an electrostatic comb-driven MEMS scanning mirror for two-dimensional raster scanning", Micromach., 12(4), 378. https://doi.org/10.3390/mi12040378.
  29. Witvrouw, A. and Mehta, A. (2005), "The use of functionally graded poly-SiGe layers for MEMS aplications", Mater. Sci. Forum, 492-493, 255-260. https://doi.org/10.4028/www.scientific.net/MSF.492-493.255.
  30. Yancheng, L. and Jianchun, L. (2019), "Overview of the development of smart base isolation system featuring magnetorheological elastomer", Smart Struct. Syst., 24(1), 37-52. https://doi.org/10.12989/sss.2019.24.1.037.
  31. Yang, L., Peng, J., Fang, F. and Yang, J. (2019), "Static pull-in instability and free vibration of functionally graded graphene nanoplatelet reinforced micro-sandwich beams under thermo-electrical actuation", Microsyst. Technol., 25, 3599-3608. https://doi.org/10.1007/s00542-019-04359-6.
  32. Younis, M.I., Ouakad, H.M., Alsaleem, F.M., Miles, R. and Cui, W. (2010), "Nonlinear dynamics of MEMS arches under harmonic electrostatic actuation", J. Microelectromech. Syst., 19(3), 647-656. https://doi.org/10.1109/JMEMS.2010.2046624.
  33. Zeerouni, N., Aguib, S., Nour, A., Djedid, T. and Nedjar, A. (2018), "Active control of the nonlinear bending behavior of magnetorheological elastomer sandwich beam with magnetic field", Vibroeng. Procedia, 18, 73-78. https://doi.org/10.21595/vp.2018.19934.
  34. Zhou, G.Y. and Wang, Q. (2006), "Use of magnetorheological elastomer in an adaptive sandwich beam with conductive skins. Part I: Magnetoelastic loads in conductive skins", Int. J. Solid. Struct., 43(17), 5386-5402. https://doi.org/10.1016/j.ijsolstr.2005.07.042.