DOI QR코드

DOI QR Code

Metaheuristic-designed systems for simultaneous simulation of thermal loads of building

  • Lin, Chang (School of Architecture, South China University of Technology) ;
  • Wang, Junsong (School of Architecture, South China University of Technology)
  • 투고 : 2020.12.18
  • 심사 : 2022.02.10
  • 발행 : 2022.05.25

초록

Water cycle algorithm (WCA) has been a very effective optimization technique for complex engineering problems. This study employs the WCA for simultaneous prediction of heating load (LH) and cooling load (LC) in residential buildings. This algorithm is responsible for optimally tuning a neural network (NN). Utilizing 614 records, the behavior of the LH and LC is explored and the captured knowledge is then used to predict for 154 unanalyzed building conditions. Since the WCA is a population-based algorithm, different numbers of the searching agents were tested to find the most optimum configuration. It was observed that the best solution is discovered by 500 agents. A comparison with five newly-developed benchmark optimizers, namely equilibrium optimizer (EO), multi-tracker optimization algorithm (MTOA), slime mould algorithm (SMA), multi-verse optimizer (MVO), and electromagnetic field optimization (EFO) revealed that the WCANN predicts the desired parameters with considerably larger accuracy. Obtained root mean square errors (1.4866, 2.1296, 2.8279, 2.5727, 2.5337, and 2.3029 for the LH and 2.1767, 2.6459, 3.1821, 2.9732, 2.9616, and 2.6890 for the LC) indicated that the most reliable prediction was presented by the proposed model. The EFONN, however, provided a more time-effective solution. Lastly, an explicit predictive formula was elicited from the WCANN.

키워드

참고문헌

  1. Abdel-Basset, M., Chang, V. and Mohamed, R. (2020), "A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems", Neural Comput. Applicat., 1-34. https://doi.org/10.1007/s00521-020-04820-y.
  2. Abedinpourshotorban, H., Shamsuddin, S.M., Beheshti, Z. and Jawawi, D.N. (2016), "Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm", Swarm Evolut. Computat., 26, 8-22. https://doi.org/10.1016/j.swevo.2015.07.002.
  3. Ahmadi-Karvigh, S., Ghahramani, A., Becerik-Gerber, B. and Soibelman, L. (2018), "Real-time activity recognition for energy efficiency in buildings", Appl. Energy, 211, 146-160. https://doi.org/10.1016/j.apenergy.2017.11.055.
  4. Al-Shammari, E.T., Keivani, A., Shamshirband, S., Mostafaeipour, A., Yee, L., Petkovic, D. and Ch, S. (2016), "Prediction of heat load in district heating systems by Support Vector Machine with Firefly searching algorithm", Energy, 95, 266-273. https://doi.org/10.1016/j.energy.2015.11.079.
  5. Alam, A.G., Baek, C.I. and Han, H. (2016), "Prediction and analysis of building energy efficiency using artificial neural network and design of experiments", Appl. Mech. Mater., 541-545. https://doi.org/10.4028/www.scientific.net/AMM.819.541.
  6. Anderson, D. and McNeill, G. (1992), "Artificial neural networks technology", Kaman Sciences Corp., 258(6), 1-83.
  7. Brabazon, A. and McGarraghy, S. (2020), "Slime mould foraging: an inspiration for algorithmic design", Int. J. Innov. Comput. Applicat., 11(1), 30-45. https://doi.org/10.1504/IJICA.2020.105316.
  8. Bui, D.K., Nguyen, T.N., Ngo, T.D. and Nguyen-Xuan, H. (2020), "An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings", Energy, 190, 116370. https://doi.org/10.1016/j.energy.2019.116370.
  9. Celik, E. and Gor, H. (2019), "Enhanced speed control of a DC servo system using PI+ DF controller tuned by stochastic fractal search technique", J. Franklin Inst., 356(3), 1333-1359. https://doi.org/10.1016/j.jfranklin.2018.11.020.
  10. Celik, E., Gor, H., Ozturk, N. and Kurt, E. (2017), "Application of artificial neural network to estimate power generation and efficiency of a new axial flux permanent magnet synchronous generator", Int. J. Hydrogen Energy, 42(28), 17692-17699. https://doi.org/10.1016/j.ijhydene.2017.01.168.
  11. Chou, J.S. and Bui, D.K. (2014), "Modeling heating and cooling loads by artificial intelligence for energy-efficient building design", Energy Build., 82, 437-446. https://doi.org/10.1016/j.enbuild.2014.07.036.
  12. Chou, J.S. and Ngo, N.T. (2016), "Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns", Appl. Energy, 177, 751-770. https://doi.org/10.1016/j.apenergy.2016.05.074.
  13. Chung, W., Hui, Y.V. and Lam, Y.M. (2006), "Benchmarking the energy efficiency of commercial buildings", Appl. Energy, 83(1), 1-14. https://doi.org/10.1016/j.apenergy.2004.11.003.
  14. Das, M., Singh, M.A.K. and Biswas, A. (2019), "Techno-economic optimization of an off-grid hybrid renewable energy system using metaheuristic optimization approaches-case of a radio transmitter station in India", Energy Convers. Manage., 185, 339-352. https://doi.org/10.1016/j.enconman.2019.01.107
  15. Dunlop, T. (2019), "Mind the gap: A social sciences review of energy efficiency", Energy Res. Soc. Sci., 56, 101216. https://doi.org/10.1016/j.erss.2019.05.026.
  16. Ekici, B.B. and Aksoy, U.T. (2011), "Prediction of building energy needs in early stage of design by using ANFIS", Expert Syst. Applicat., 38(5), 5352-5358. https://doi.org/10.1016/j.eswa.2010.10.021.
  17. EMSD (2019), Energy end-use data.
  18. Eskandar, H., Sadollah, A., Bahreininejad, A. and Hamdi, M. (2012), "Water cycle algorithm-A novel metaheuristic optimization method for solving constrained engineering optimization problems", Comput. Struct., 110, 151-166. https://doi.org/10.1016/j.compstruc.2012.07.010.
  19. Faramarzi, A., Heidarinejad, M., Stephens, B. and Mirjalili, S. (2020), "Equilibrium optimizer: A novel optimization algorithm", Knowl.-Bas. Syst., 191, 105190. https://doi.org/10.1016/j.knosys.2019.105190.
  20. Fathy, A. and Rezk, H. (2018), "Multi-verse optimizer for identifying the optimal parameters of PEMFC model", Energy, 143, 634-644. https://doi.org/10.1016/j.energy.2017.11.014.
  21. Feng, Y., Zhang, B., Liu, Y., Niu, Z., Dai, B., Fan, Y. and Chen, X. (2021), "A 200-225-GHz manifold-coupled multiplexer utilizing metal waveguides", IEEE Trans. Microw. Theory Techniq., 69(12), 5327-5333. https://doi.org/10.1109/TMTT.2021.3119316.
  22. Foong, L.K., Moayedi, H. and Lyu, Z. (2020), "Computational modification of neural systems using a novel stochastic search scheme, namely evaporation rate-based water cycle algorithm: an application in geotechnical issues", Eng. Comput., 37(4), 3347-3358. https://doi.org/10.1007/s00366-020-01000-3.
  23. Ghiasi, M.M., Arabloo, M., Mohammadi, A.H. and Barghi, T. (2016), "Application of ANFIS soft computing technique in modeling the CO2 capture with MEA, DEA, and TEA aqueous solutions", Int. J. Greenhouse Gas Control, 49, 47-54. https://doi.org/10.1016/j.ijggc.2016.02.015.
  24. Gor, H. and Kurt, E. (2016), "Waveform characteristics and losses of a new double sided axial and radial flux generator", Int. J. Hydrogen Energy, 41(29), 12512-12524. https://doi.org/10.1016/j.ijhydene.2015.12.172.
  25. Guo, Z., Moayedi, H., Foong, L.K. and Bahiraei, M. (2020), "Optimal modification of heating, ventilation, and air conditioning system performances in residential buildings using the integration of metaheuristic optimization and neural computing", Energy Build., 214, 109866. https://doi.org/10.1016/j.enbuild.2020.109866.
  26. Hakim, S.J.S. and Razak, H.A. (2014), "Modal parameters based structural damage detection using artificial neural networks-a review", Smart Struct. Syst., 14(2), 159-189. https://doi.org/10.12989/sss.2014.14.2.159.
  27. Hecht-Nielsen, R. (1992), Neural Networks for Perception, Elsevier, 65-93. https://doi.org/10.1016/B978-0-12-741252-8.50010-8.
  28. Homod, R.Z., Togun, H., Abd, H.J. and Sahari, K.S. (2020), "A novel hybrid modelling structure fabricated by using Takagi-Sugeno fuzzy to forecast HVAC systems energy demand in real-time for Basra city", Sustain. Cities Soc., 56, 102091. https://doi.org/10.1016/j.scs.2020.102091.
  29. Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neur. Network., 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8.
  30. Huang, Y., Niu, J.L. and Chung, T.M. (2014), "Comprehensive analysis on thermal and daylighting performance of glazing and shading designs on office building envelope in cooling-dominant climates", Appl. Energy, 134, 215-228. https://doi.org/10.1016/j.apenergy.2014.07.100.
  31. Ikeda, S. and Ooka, R. (2015), "Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and heat source in a building energy system", Appl. Energy, 151, 192-205. https://doi.org/10.1016/j.apenergy.2015.04.029.
  32. International Energy Agency (IEA) (2019), Key world energy statistics, OECD, Paris, France.
  33. Jangir, P., Parmar, S.A., Trivedi, I.N. and Bhesdadiya, R.H. (2017), "A novel hybrid particle swarm optimizer with multi verse optimizer for global numerical optimization and optimal reactive power dispatch problem", Eng. Sci. Technol., 20(2), 570-586. https://doi.org/10.1016/j.jestch.2016.10.007.
  34. Khosravi, H., Zakeri, E., Xie, W.F. and Ahmadi, B. (2020), "Adaptive multi-tracker optimization algorithm for global optimization problems: emphasis on applications in chemical engineering", Eng. Comput., 1-28. https://doi.org/10.1007/s00366-020-01101-z.
  35. Koschwitz, D., Frisch, J. and Van Treeck, C. (2018), "Data-driven heating and cooling load predictions for non-residential buildings based on support vector machine regression and NARX Recurrent Neural Network: A comparative study on district scale", Energy, 165, 134-142. https://doi.org/10.1016/j.energy.2018.09.068.
  36. Kumar, S., Pal, S.K. and Singh, R.P. (2018), "A novel method based on extreme learning machine to predict heating and cooling load through design and structural attributes", Energy Build., 176, 275-286. https://doi.org/10.1016/j.enbuild.2018.06.056.
  37. Kurt, E. and Gor, H. (2014), "Electromagnetic design of a new axial flux generator", Proceedings of the 2014 6th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 39-42. https://doi.org/10.1109/ECAI.2014.7090195.
  38. Le, L.T., Nguyen, H., Dou, J. and Zhou, J. (2019a), "A comparative study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in estimating the heating load of buildings' energy efficiency for smart city planning", Appl. Sci., 9(13), 2630. https://doi.org/10.3390/app9132630.
  39. Le, L.T., Nguyen, H., Zhou, J., Dou, J. and Moayedi, H. (2019b), "Estimating the heating load of buildings for smart city planning using a novel artificial intelligence technique PSO-XGBoost", Appl. Sci., 9(13), 2714. https://doi.org/10.3390/app9132714.
  40. Li, Z.J. and Zhang, K. (2008), "Comparison of three GIS-based hydrological models", J. Hydrol. Eng., 13(5), 364-370. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:5(364).
  41. Li, Q., Meng, Q., Cai, J., Yoshino, H. and Mochida, A. (2009a), "Applying support vector machine to predict hourly cooling load in the building", Appl. Energy, 86(10), 2249-2256. https://doi.org/10.1016/j.apenergy.2008.11.035.
  42. Li, Q., Meng, Q., Cai, J., Yoshino, H. and Mochida, A. (2009b), "Predicting hourly cooling load in the building: A comparison of support vector machine and different artificial neural networks", Energy Convers. Manage., 50(1), 90-96. https://doi.org/10.1016/j.enconman.2008.08.033.
  43. Li, S., Chen, H., Wang, M., Heidari, A.A. and Mirjalili, S. (2020), "Slime mould algorithm: A new method for stochastic optimization", Future Gener. Comput. Syst., 111, 300-323. https://doi.org/10.1016/j.future.2020.03.055.
  44. Li, A., Xiao, F., Zhang, C. and Fan, C. (2021a), "Attention-based interpretable neural network for building cooling load prediction", Appl. Energy, 299, 117238. https://doi.org/10.1016/j.apenergy.2021.117238.
  45. Li, X., Gui, D., Zhao, Z., Li, X., Wu, X., Hua, Y., Guo, P. and Zhong, H. (2021b), "Operation optimization of electrical-heating integrated energy system based on concentrating solar power plant hybridized with combined heat and power plant", J. Cleaner Product., 289, 125712. https://doi.org/10.1016/j.jclepro.2020.125712.
  46. Liang, S., Foong, L.K. and Lyu, Z. (2020), "Determination of the friction capacity of driven piles using three sophisticated search schemes", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-020-01118-4.
  47. Luo, Q., Wen, C., Qiao, S. and Zhou, Y. (2016), "Dual-system water cycle algorithm for constrained engineering optimization problems", International Conference on Intelligent Computing, pp. 730-741. https://doi.org/10.1007/978-3-319-42291-6_73.
  48. Macas, M., Moretti, F., Fonti, A., Giantomassi, A., Comodi, G., Annunziato, M., Pizzuti, S. and Capra, A. (2016), "The role of data sample size and dimensionality in neural network based forecasting of building heating related variables", Energy Build., 111, 299-310. https://doi.org/10.1016/j.enbuild.2015.11.056.
  49. Martin, G.L., Monfet, D., Nouanegue, H.F., Lavigne, K. and Sansregret, S. (2019), "Energy calibration of HVAC sub-system model using sensitivity analysis and meta-heuristic optimization", Energy Build., 202, 109382. https://doi.org/10.1016/j.enbuild.2019.109382.
  50. McQuiston, F.C., Parker, J.D. and Spitler, J.D. (1982), Heating, Ventilating, and Air Conditioning: Analysis and Design, John Wiley & Sons.
  51. Mehrabi, M., Pradhan, B., Moayedi, H. and Alamri, A. (2020), "Optimizing an adaptive neuro-fuzzy inference system for spatial prediction of landslide susceptibility using four state-of-the-art metaheuristic techniques", Sensors, 20(6), 1723. https://doi.org/10.3390/s20061723.
  52. Mirjalili, S., Mirjalili, S.M. and Hatamlou, A. (2016), "Multi-verse optimizer: a nature-inspired algorithm for global optimization", Neural Comput. Applicat., 27(2), 495-513. https://doi.org/10.1007/s00521-015-1870-7.
  53. Moayedi, H. and Mosavi, A. (2021a), "Suggesting a stochastic fractal search paradigm in combination with artificial neural network for early prediction of cooling load in residential buildings", Energies, 14(6), 1649. https://doi.org/10.3390/en14061649.
  54. Moayedi, H. and Mosavi, A. (2021b), "Synthesizing multi-layer perceptron network with ant lion biogeography-based dragonfly algorithm evolutionary strategy invasive weed and league champion optimization hybrid algorithms in predicting heating load in residential buildings", Sustainability, 13(6), 3198. https://doi.org/10.3390/su13063198.
  55. Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid, A.S.A. and Pradhan, B. (2019), "Modification of landslide susceptibility mapping using optimized PSO-ANN technique", Eng. Comput., 35(3), 967-984. https://doi.org/10.1007/s00366-018-0644-0.
  56. Moayedi, H., Mu'azu, M.A. and Foong, L.K. (2020), "Novel swarm-based approach for predicting the cooling load of residential buildings based on social behavior of elephant herds", Energy Build., 206, 109579. https://doi.org/10.1016/j.enbuild.2019.109579.
  57. Moradzadeh, A., Mansour-Saatloo, A., Mohammadi-Ivatloo, B. and Anvari-Moghaddam, A. (2020), "Performance evaluation of two machine learning techniques in heating and cooling loads forecasting of residential buildings", Appl. Sci., 10(11), 3829. https://doi.org/10.3390/app10113829.
  58. Nasir, M., Sadollah, A., Choi, Y.H. and Kim, J.H. (2020), "A comprehensive review on water cycle algorithm and its applications", Neural Comput. Applicat., 32(23), 17433-17488. https://doi.org/10.1007/s00521-020-05112-1.
  59. Nehdi, M. and Greenough, T. (2007), "Modeling shear capacity of RC slender beams without stirrups using genetic algorithms", Smart Struct. Syst., Int. J., 3(1), 51-68. https://doi.org/10.12989/sss.2007.3.1.051.
  60. Nguyen, H., Mehrabi, M., Kalantar, B., Moayedi, H. and Abdullahi, M.A.M. (2019), "Potential of hybrid evolutionary approaches for assessment of geo-hazard landslide susceptibility mapping", Geomat. Natural Hazards Risk, 10(1), 1667-1693. https://doi.org/10.1080/19475705.2019.1607782.
  61. Nilashi, M., Dalvi-Esfahani, M., Ibrahim, O., Bagherifard, K., Mardani, A. and Zakuan, N. (2017), "A soft computing method for the prediction of energy performance of residential buildings", Measurement, 109, 268-280. https://doi.org/10.1016/j.measurement.2017.05.048.
  62. Ouarghi, R. and Krarti, M. (2006), "Building Shape Optimization Using Neural Network and Genetic Algorithm Approach", Ashrae Transact., 112(1).
  63. Yildiz, A.R., Ozkaya, H., Yildiz, M., Bureerat, S., Yildiz, B.S. and Sait, S.M. (2020), "The equilibrium optimization algorithm and the response surface-based metamodel for optimal structural design of vehicle components", Mater. Test., 62(5), 492-496. https://doi.org/10.3139/120.111509
  64. Palm, J. and Thollander, P. (2010), "An interdisciplinary perspective on industrial energy efficiency", Appl. Energy, 87(10), 3255-3261. https://doi.org/10.1016/j.apenergy.2010.04.019.
  65. Pinkus, A. (1999), "Approximation theory of the MLP model in neural networks", Acta Numerica, 8, 143-195. https://doi.org/10.1017/S0962492900002919.
  66. Qiao, W., Moayedi, H. and Foong, L.K. (2020), "Nature-inspired hybrid techniques of IWO, DA, ES, GA, and ICA, validated through a k-fold validation process predicting monthly natural gas consumption", Energy Build., 110023. https://doi.org/10.1016/j.enbuild.2020.110023.
  67. Reddy, A.V.R. and Kumar, M.S. (2019), "A Comparative Analysis of Regression Algorithms for Energy Estimation in Residential Buildings", International Conference on Intelligent Computing and Communication Technologies, 300-311. https://doi.org/10.1007/978-981-13-8461-5_33.
  68. Roberts, A. and Marsh, A. (2001), ECOTECT: Environmental Prediction in Architectural Education.
  69. Roy, S.S., Roy, R. and Balas, V.E. (2018), "Estimating heating load in buildings using multivariate adaptive regression splines, extreme learning machine, a hybrid model of MARS and ELM", Renew. Sustain. Energy Rev., 82, 4256-4268. https://doi.org/10.1016/j.rser.2017.05.249.
  70. Schwalm, C.R., Huntinzger, D.N., Michalak, A.M., Fisher, J.B., Kimball, J.S., Mueller, B., Zhang, K. and Zhang, Y. (2013), "Sensitivity of inferred climate model skill to evaluation decisions: a case study using CMIP5 evapotranspiration", Environ. Res. Lett., 8(2), 024028. https://doi.org/10.1088/1748-9326/8/2/024028.
  71. Seyedashraf, O., Mehrabi, M. and Akhtari, A.A. (2018), "Novel approach for dam break flow modeling using computational intelligence", J. Hydrol., 559, 1028-1038. https://doi.org/10.1016/j.jhydrol.2018.03.001.
  72. Seyedzadeh, S., Rahimian, F.P., Rastogi, P. and Glesk, I. (2019), "Tuning machine learning models for prediction of building energy loads", Sustain. Cities Soc., 47, 101484. https://doi.org/10.1016/j.scs.2019.101484.
  73. Seyedzadeh, S., Rahimian, F.P., Oliver, S., Glesk, I. and Kumar, B. (2020), "Data driven model improved by multi-objective optimisation for prediction of building energy loads", Automat. Constr., 116, 103188. https://doi.org/10.1016/j.autcon.2020.103188.
  74. Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N.T. and Toghroli, A. (2020), "Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)", Smart Struct. Syst., 25(2), 183-195. https://doi.org/10.12989/sss.2020.25.2.183.
  75. Silva, B.N., Khan, M. and Han, K. (2018), "Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities", Sustain. Cities Soc., 38, 697-713. https://doi.org/10.1016/j.scs.2018.01.053.
  76. Song, S., Jia, H. and Ma, J. (2019), "A chaotic electromagnetic field optimization algorithm based on fuzzy entropy for multilevel thresholding color image segmentation", Entropy, 21(4), 398. https://doi.org/10.3390/e21040398.
  77. Talebi, B. and Dehkordi, M.N. (2018), "Sensitive association rules hiding using electromagnetic field optimization algorithm", Expert Syst. Applicat., 114, 155-172. https://doi.org/10.1016/j.eswa.2018.07.031.
  78. Tran, D.H., Luong, D.L. and Chou, J.S. (2020), "Nature-inspired metaheuristic ensemble model for forecasting energy consumption in residential buildings", Energy, 191, 116552. https://doi.org/10.1016/j.energy.2019.116552.
  79. Tsanas, A. and Xifara, A. (2012), "Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools", Energy Build., 49, 560-567. https://doi.org/10.1016/j.enbuild.2012.03.003.
  80. Vine, E. (2003), "Opportunitites for promoting energy efficiency in buildings as an air quality compliance approach", Energy, 28(4), 319-341. https://doi.org/10.1016/S0360-5442(02)00112-3.
  81. Wu, D., Foong, L.K. and Lyu, Z. (2020), "Two neural-metaheuristic techniques based on vortex search and backtracking search algorithms for predicting the heating load of residential buildings", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-01074-z.
  82. Xu, J., Wu, Z., Chen, H., Shao, L., Zhou, X. and Wang, S. (2021), "Study on strength behavior of basalt fiber-reinforced loess by digital image technology (DIT) and scanning electron microscope (SEM)", Arab. J. Sci. Eng., 46(11), 11319-11338. https://doi.org/10.1007/s13369-021-05787-1.
  83. Yaici, W. and Entchev, E. (2016), "Adaptive neuro-fuzzy inference system modelling for performance prediction of solar thermal energy system", Renew. Energy, 86, 302-315. https://doi.org/10.1016/j.renene.2015.08.028.
  84. Ye, X., Moayedi, H., Khari, M. and Foong, L.K. (2020), "Metaheuristic-hybridized multilayer perceptron in slope stability analysis", Smart Struct. Syst., 26(3), 263-275. https://doi.org/10.12989/sss.2020.26.3.263.
  85. Zakeri, E., Moezi, S.A., Bazargan-Lari, Y. and Zare, A. (2017), "Multi-tracker optimization algorithm: a general algorithm for solving engineering optimization problems", Iran. J. Sci. Technol. Trans. Mech. Eng., 41(4), 315-341. https://doi.org/10.1007/s40997-016-0066-9.
  86. Zeynali, S., Rostami, N., Ahmadian, A. and Elkamel, A. (2020), "Two-stage stochastic home energy management strategy considering electric vehicle and battery energy storage system: An ANN-based scenario generation methodology", Sustain. Energy Technol. Assessm., 39, 100722. https://doi.org/10.1016/j.seta.2020.100722.
  87. Zhang, K., Chao, L.J., Wang, Q.Q., Huang, Y.C., Liu, R.H., Hong, Y., Tu, Y., Qu, W. and Ye, J.Y. (2019), "Using multi-satellite microwave remote sensing observations for retrieval of daily surface soil moisture across China", Water Sci. Eng., 12(2), 85-97. https://doi.org/10.1016/j.wse.2019.06.001.
  88. Zhang, Y., Pan, G., Chen, B., Han, J., Zhao, Y. and Zhang, C. (2020), "Short-term wind speed prediction model based on GA-ANN improved by VMD", Renew. Energy, 156, 1373-1388. https://doi.org/10.1016/j.renene.2019.12.047.
  89. Zhang, C., Ali, A. and Sun, L. (2021), "Investigation on low-cost friction-based isolation systems for masonry building structures: Experimental and numerical studies", Eng. Struct., 243, 112645. https://doi.org/10.1016/j.engstruct.2021.112645.
  90. Zhao, J. and Liu, X. (2018), "A hybrid method of dynamic cooling and heating load forecasting for office buildings based on artificial intelligence and regression analysis", Energy Build., 174, 293-308. https://doi.org/10.1016/j.enbuild.2018.06.050.
  91. Zheng, S., Lyu, Z. and Foong, L.K. (2020), "Early prediction of cooling load in energy-efficient buildings through novel optimizer of shuffled complex evolution", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-020-01140-6.
  92. Zhou, G., Moayedi, H., Bahiraei, M. and Lyu, Z. (2020a), "Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings", J. Cleaner Product., 254, 120082. https://doi.org/10.1016/j.jclepro.2020.120082.
  93. Zhou, G., Moayedi, H. and Foong, L.K. (2020b), "Teaching-learning-based metaheuristic scheme for modifying neural computing in appraising energy performance of building", Eng. Comput., 37(4), 3037-3048. https://doi.org/10.1007/s00366-020-00981-5.
  94. Zhou, G., Moayedi, H. and Foong, L.K. (2021a), "Teaching-learning-based metaheuristic scheme for modifying neural computing in appraising energy performance of building", Eng. Comput., 37(4), 3037-3048. https://doi.org/10.1007/s00366-020-00981-5.
  95. Zhou, W., Liu, J., Lei, J., Yu, L. and Hwang, J.N. (2021b), "GMNet: graded-feature multilabel-learning network for RGB-thermal urban scene semantic segmentation", IEEE Transact. Image Process., 30, 7790-7802. https://doi.org/10.1109/TIP.2021.3109518.