Acknowledgement
This research was supported by the Algerian Ministry of Higher Education and Scientific Research (MESRS) as part of the grant for the PRFU research project n° A01L02UN140120200002 and by the University of Tiaret, in Algeria.
References
- Abderezak, R., Rabia, B., Daouadji, T.H., Abbes, B., Belkacem, A. and Abbes, F. (2019), "Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams", Adv. Mater. Res., Int. J., 7(2), 83-103. https://doi.org/10.12989/amr.2018.7.2.083
- Abderezak, R., Daouadji, T.H. and Rabia, B. (2020), "Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate", Coupl. Syst. Mech., Int. J., 9(5), 473-498. http://doi.org/10.12989/csm.2020.9.5.473
- Abderezak, R., Daouadji, T.H. and Rabia, B. (2021a), "Modeling and analysis of the imperfect FGMdamaged RC hybrid beams", Adv. Computat. Des., Int. J., 6(2), 117-133. http://doi.org/10.12989/acd.2021.6.2.117
- Abderezak, R., Daouadji, T.H. and Rabia, B. (2021b), "Aluminum beam reinforced by externally bonded composite materials", Adv. Mater. Res., Int. J., 10(1), 23-44. http://doi.org/10.12989/amr.2021.10.1.023
- Abderezak, R., Tahar, H.D., Rabia, B. and Tounsi, A. (2021c), "Mechanical behavior of RC cantilever beams strengthened with FRP laminate plate", Adv. Computat. Des., Int. J., 6(3), 169-190. http://doi.org/10.12989/acd.2021.6.3.169
- Abderezak, R., Tahar, H.D., Rabia, B. and Tounsi, A. (2021d), "New proposal for flexural strengthening of a continuous I-steel beam using FRP laminate under thermo-mechanical loading", Struct. Eng. Mech., Int. J., 78(6), 703-714. http://doi.org/10.12989/sem.2021.78.6.703
- Abderezak, R., Daouadji, T.H. and Rabia, B. (2021e), "Fiber reinforced polymer in civil engineering: Shear lag effect on damaged RC cantilever beams bonded by prestressed plate", Coupl. Syst. Mech., Int. J., 10(4), 299-316. http://doi.org/10.12989/csm.2021.10.4.299
- Abderezak, R., Daouadji, T.H. and Rabia, B. (2021f), "New solution for damaged porous RC cantilever beamsstrengthening by composite plate", Adv. Mater. Res., Int. J., 10(3), 169-194. http://doi.org/10.12989/amr.2021.10.3.169
- Aicha, K., Rabia, B., Daouadji, T.H. and Bouzidene, A. (2020), "Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions", Coupl. Syst. Mech., Int. J., 9(6), 575-597. http://doi.org/10.12989/csm.2020.9.6.575
- Anil, K.L., Panda, S.K., Sharma, N., Hirwani, C.K. and Topal, U. (2020), "Optimal fiber volume fraction prediction of layered composite using frequency constraints- A hybrid FEM approach", Comput. Concrete, Int. J., 25(4), 303-310. http://doi.org/10.12989/cac.2020.25.4.303
- Antar, K., Amara, K., Benyoucef, S., Bouazza, M. and Ellali, M. (2019), "Hygrothermal effects on the behavior of reinforced-concrete beams strengthened by bonded composite laminate plates", Struct. Eng. Mech., Int. J., 69(3), 327-334. https://doi.org/10.12989/sem.2019.69.3.327
- Benachour, A., Benyoucef, S. and Tounsi, A. (2008), "Interfacial stress analysis of steel beams reinforced with bonded prestressed FRP plate", Eng. Struct., 30, 3305-3315. https://doi.org/10.1016/j.engstruct.2008.05.007
- Benferhat, R., Daouadji, T.H. and Abderezak, R. (2020a), "Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation", Coupl. Syst. Mech., Int. J., 9(6), 499-519. http://doi.org/10.12989/csm.2020.9.6.499
- Benferhat, R., Daouadji, T.H. and Abderezak, R. (2020b), "Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis", Adv. Mater. Res., Int. J., 9(4), 265-287. http://doi.org/10.12989/amr.2020.9.4.265
- Benferhat, R., Daouadji, T.H. and Abderezak, R. (2021a), "Effect of porosity on fundamental frequencies of FGM sandwich plates", Compos. Mater. Eng., Int. J., 3(1), 25-40. http://doi.org/10.12989/cme.2021.3.1.025
- Benferhat, R., Daouadji, T.H. and Abderezak, R. (2021b), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", Compos. Mater. Eng., Int. J., 3(1), 41-55. http://doi.org/10.12989/cme.2021.3.1.041
- Benferhat, R., Daouadji, T.H. and Abderezak, R. (2021c), "Analysis and sizing of RC beams reinforced by external bonding of imperfect functionally graded plate", Adv. Mater. Res., Int. J., 10(2), 77-98. http://doi.org/10.12989/amr.2021.10.2.077
- Bensattalah, T., Hassaine Daouadji, T. and Zidour, M. (2020), "Influences the Shape of the Floor on the Behavior of Buildings Under Seismic Effect", Proceedings of the 4th International Symposium on Materials and Sustainable Development, pp. 26-42. https://doi.org/10.1007/978-3-030-43268-3_3
- Chedad, A., Daouadji, T.H., Abderezak, R., Belkacem, A., Abbes, B., Benferhat, R. and Abbes, F. (2018), "A high-order closed-form solution for interfacial stresses in externally sandwich FGM plated RC beams", Adv. Mater. Res., Int. J., 6(4), 317-328. https://doi.org/10.12989/amr.2017.6.4.317
- Chen, H., Song, H., Li, Y. and Safarpour, M. (2020), "Hygro-thermal buckling analysis of polymer-CNT-fiber-laminated nano-composite disk under uniform lateral pressure with the aid of GDQM", Eng. Comput. https://doi.org/10.1007/s00366-020-01102-y
- Cheng, X., Zhang, J., Cheng, Y., Guo, X. and Huang, W. (2020), "Effect of curing condition on mechanical properties of scarf-repaired composite laminates", Steel Compos. Struct., Int. J., 37(4), 419-429. https://doi.org/10.12989/scs.2020.37.4.419
- Civalek, O. and Avcar, M. (2020a), "Free vibration and buckling analyses of CNT reinforced laminated nonrectangular plates by discrete singular convolution method", Eng. Comput. https://doi.org/10.1007/s00366-020-01168-8
- Civalek, O. and Avcar, M. (2020b), "Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method", Eng. Comput. https://doi.org/10.1007/s00366-020-01168-8
- Daraei, B., Shojaee, S. and Hamzehei-Javaran, S. (2020), "Free vibration analysis of axially moving laminated beams with axial tension based on 1D refined theories using Carrera unified formulation", Steel Compos. Struct., Int. J., 37(1), 37-49. https://doi.org/10.12989/scs.2020.37.1.037
- Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Computat. Des., Int. J., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057
- Daouadji, T.H., Boussad, A., Abderezak, R., Benferhat, R., Fazilay, A. and Belkacem, A. (2019), "Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study", Struct. Eng. Mech., Int. J., 72(4), 409-419. https://doi.org/10.12989/sem.2019.72.4.409
- Daouadji, T.H., Abderezak, R. and Benferhat, R. (2020), "Flexural performance of wooden beams strengthened by composite plate", Struct. Monitor. Maint., Int. J., 7(3), 233-259. http://doi.org/10.12989/smm.2020.7.3.233
- Daouadji, T.H., Tayeb, B., Abderezak, R. and Tounsi, A. (2021a), "New approach of composite wooden beam-reinforced concrete slab strengthened by external bonding of prestressed composite plate: Analysis and modeling", Struct. Eng. Mech., Int. J., 78(3), 319-332. http://doi.org/10.12989/sem.2021.78.3.319
- Daouadji, T.H., Abderezak, R., Benferhat, R. and Tounsi, A. (2021b), "Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses", Coupl. Syst. Mech., Int. J., 10(2), 161-184. http://doi.org/10.12989/csm.2021.10.2.161
- Daouadji, T.H., Abderezak, R., Benferhat, R. and Tounsi, A. (2021c), "Impact of thermal effects in FRP-RC hybrid cantilever beams", Struct. Eng. Mech., Int. J., 78(5), 573-583. http://doi.org/10.12989/sem.2021.78.5.573
- Daouadji, T.H., Abderezak, R. and Benferhat, R. (2021d), "A new model for adhesive shear stress in damaged RC cantilever beam strengthened by composite plate taking into account the effect of creep and shrinkage", Struct. Eng. Mech., Int. J., 79(5), 531-540. http://doi.org/10.12989/sem.2021.79.5.531
- Daouadji, T.H., Abderezak, R. and Benferhat, R. (2021e), "Hyperstatic steel structure strengthened with prestressed carbon/glass hybrid laminated plate", Coupl. Syst. Mech., Int. J., 10(5), 393-414. https://doi.org/10.12989/csm.2021.10.5.393
- Gomes, G.F., de Almeida, F.A., Ancelotti, A.C. and da Cunha, S.S. (2021), "Inverse structural damage identification problem in CFRP laminated plates using SFO algorithm based on strain fields", Eng. Comput., 37, 3771-3791. https://doi.org/10.1007/s00366-020-01027-6
- Guenaneche, B. and Tounsi, A. (2014), "Effect of shear deformation on interfacial stress analysis in plated beams under arbitrary loading", Adhes. Adhes., 48, 1-13. https://doi.org/10.1016/j.ijadhadh.2013.09.016
- Hadj, B., Benferhat, R. and Daouadji, T.H. (2021), "Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity", Coupl. Syst. Mech., Int. J., 10(1), 61-77. http://doi.org/10.12989/csm.2021.10.1.061
- He, X.J., Zhou, C.Y. and Wang, Y. (2019), "Interfacial stresses in reinforced concrete cantilever members strengthened with fibre-reinforced polymer laminates", Adv. Struct. Eng., 23(2), 277-288. https://doi.org/10.1177/1369433219868933
- Henni, M.A.B., Abbes, B., Daouadji, T.H., Abbes, F. and Adim, B. (2021), "Numerical modeling of hygrothermal effect on the dynamic behavior of hybrid composite plates", Steel Compos. Struct., Int. J., 39(6), 751-763. http://doi.org/10.12989/scs.2021.39.6.751
- Henriques, D., Goncalves, R., Sousa, C. and Camotim, D. (2020), "GBT-based time-dependent analysis of steel-concrete composite beams including shear lag and concrete cracking effects", Thin-Wall. Struct., 150, 106706. https://doi.org/10.1016/j.tws.2020.106706
- Hirwani, C.K. and Panda, S.K. (2020), "Nonlinear transient analysis of delaminated curved composite structure under blast/pulse load", Eng. Comput., 36, 1201-1214. https://doi.org/10.1007/s00366-019-00757-6
- Kalita, K., Dey, P., Haldar, S. and Gao, X.Z. (2020), "Optimizing frequencies of skew composite laminates with metaheuristic algorithms", Eng. Comput., 36, 741-761. https://doi.org/10.1007/s00366-019-00728-x
- Keshav, V. and Patel, S.N. (2020), "Non-Linear dynamic pulse buckling of laminated composite curved panels", Struct. Eng. Mech., Int. J., 73(2), 181-190. http://doi.org/10.12989/sem.2020.73.2.181
- Krour, B., Bernard, F. and Tounsi, A. (2014), "Fibers orientation optimization for concrete beam strengthened with a CFRP bonded plate: A coupled analytical-numerical investigation", Eng. Struct., 56, 218-227. https://doi.org/10.1016/j.engstruct.2013.05.008
- Larrinaga, P., Garmendia, L., Pinero, I. and San-Jose, J.T. (2020), "Flexural strengthening of low-grade reinforced concrete beams with compatible composite material: Steel Reinforced Grout (SRG)", Constr. Build. Mater., 235, 117790. https://doi.org/10.1016/j.conbuildmat.2019.117790
- Liu, S., Zhou, Y., Zheng, Q., Zhou, J., Jin, F. and Fan, H. (2019), "Blast responses of concrete beams reinforced with steel-GFRP composite bars", Structures, 22, 200-212. https://doi.org/10.1016/j.istruc.2019.08.010
- Mercan, K., Ebrahimi, F. and Civale, O. (2020), "Vibration of angle-ply laminated composite circular and annular plates", Steel Compos. Struct., Int. J., 34(1), 141-154. http://doi.org/10.12989/scs.2020.34.1.141
- Panjehpour, M., Ali, A.A.A., Voo, Y.L. and Aznieta, F.N. (2014), "Effective compressive strength of strut in CFRP-strengthened reinforced concrete deep beams following ACI 318-11", Comput. Concrete, Int. J., 13(1), 135-165. https://doi.org/10.12989/cac.2014.13.1.135
- Panjehpour, M., Farzadnia, N., Demirboga, R. and Ali, A.A.A. (2016), "Behavior of high-strength concrete cylinders repaired with CFRP sheets", J. Civil Eng. Manag., 22(1), 56-64. https://doi.org/10.3846/13923730.2014.897965
- Rabahi, A., Daouadji, T.H., Abbes, B. and Adim, B. (2016), "Analytical and numerical solution of the interfacial stress in reinforced-concrete beams reinforced with bonded prestressed composite plate", J. Reinf. Plast. Compos., 35(3), 258-272. https://doi.org/10.1177/0731684415613633
- Shahmohammadi, M.A., Azhari, M. and Saadatpour, M.M. (2020), "Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method", Steel Compos. Struct., Int. J., 34(3), 361-376. https://doi.org/10.12989/scs.2020.34.3.361
- Smith, S.T. and Teng, J.G. (2002), "Interfacial stresses in plated beams", Eng. Struct., 23(7), 857-871. http://doi.org/10.1016/S0141-0296(00)00090-0
- Tanzadeh, H. and Amoushahi, H. (2020), "Analysis of laminated composite plates based on different shear deformation plate theories", Struct. Eng. Mech., Int. J., 75(2), 247-269. http://doi.org/10.12989/sem.2020.75.2.247
- Tayeb, B., Daouadji, T.H., Abderezak, R. and Tounsi, A. (2021), "Structural bonding for civil engineering structures: New model of composite I-steel-concrete beam strengthened with CFRP plate", Steel Compos. Struct., Int. J., 41(3), 417-435. https://doi.org/10.12989/scs.2021.41.3.417
- Tlidji, Y., Benferhat, R. and Daouadji, T.H. (2021a), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., Int. J., 77(2), 217-229. http://doi.org/10.12989/sem.2021.77.2.217
- Tlidji, Y., Benferhat, R., Trinh, L.C., Daouadji, T.H. and Tounsi, A. (2021b), "New state-space approach to dynamic analysis of porous FG beam under different boundary conditions", Adv. Nano Res., Int. J., 11(4), 347-359. https://doi.org/10.12989/.2021.11.4.347
- Tounsi, A. (2006), "Improved theoretical solution for interfacial stresses in concrete beams strengthened with FRP plate", Int. J. Solids Struct., 43(14-15), 4154-4174. https://doi.org/10.1016/j.ijsolstr.2005.03.074
- Tounsi, A., Daouadji, T.H. and Benyoucef, S. (2008), "Interfacial stresses in FRP-plated RC beams: Effect of adherend shear deformations", Int. J. Adhes. Adhes., 29, 313-351. https://doi.org/10.1016/j.ijadhadh.2008.06.008
- Wang, L., Yang, J. and Li, Y.H. (2021), "Nonlinear vibration of a deploying laminated Rayleigh beam with a spinning motion in hygrothermal environment", Eng. Comput., 37, 3825-3841. https://doi.org/10.1007/s00366-020-01035-6
- Wang, H., Yan, W. and Li, C. (2020a), "Response of angle-ply laminated cylindrical shells with surfacebonded piezoelectric layers", Struct. Eng. Mech., Int. J., 76(5), 599-611. http://doi.org/10.12989/sem.2020.76.5.599
- Wang, Y.H., Yu, J., Liu, J.P., Zhou, B.X. and Chen, Y.F. (2020b), "Experimental study on assembled monolithic steel-prestressed concrete composite beam in negative moment", J. Constr. Steel Res., 167, 105667. https://doi.org/10.1016/j.jcsr.2019.06.004
- Yuan, C., Chen, W., Pham, T.M. and Hao, H. (2019), "Effect of aggregate size on bond behaviour between basalt fibre reinforced polymer sheets and concrete", Compos. Part B: Eng., 158, 459-474. https://doi.org/10.1016/j.compositesb.2018.09.089
- Zeverdejani, M.K. and Beni, Y.T. (2020), "Effect of laminate configuration on the free vibration/buckling of FG Graphene composites", Adv. Nano Res., Int. J., 8(2), 103-114. http://doi.org/10.12989/anr.2020.8.2.103
- Zohra, A., Benferhat, R., Tahar, H.D. and Tounsi, A. (2021), "Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations", Struct. Eng. Mech., Int. J., 77(6), 797-807. http://doi.org/10.12989/sem.2021.77.6.797