DOI QR코드

DOI QR Code

Rehabilitation of RC structural elements: Application for continuous beams bonded by composite plate under a prestressing force

  • Abderezak, Rabahi (Department of Civil Engineering, Laboratory of Geomatics and Sustainable Development, University of Tiaret) ;
  • Rabia, Benferhat (Department of Civil Engineering, Laboratory of Geomatics and Sustainable Development, University of Tiaret) ;
  • Daouadji, Tahar Hassaine (Department of Civil Engineering, Laboratory of Geomatics and Sustainable Development, University of Tiaret)
  • Received : 2021.07.07
  • Accepted : 2021.11.10
  • Published : 2022.06.25

Abstract

This paper presents a closed-form higher-order analysis of interfacial shear stresses in RC continuous beams strengthened with bonded prestressed laminates. For retrofitting reinforced concrete continuous beams is to bond fiber reinforced prestressed composite plates to their tensile faces. An important failure mode of such plated beams is the debonding of the composite plates from the concrete due to high level of stress concentration in the adhesive at the ends of the composite plate. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the RC continuous beams strengthened with bonded prestressed laminates. The theoretical predictions are compared with other existing solutions. A parametric study has been conducted to investigate the sensitivity of interface behavior to parameters such as laminate stiffness and the thickness of the laminate where all were found to have a marked effect on the magnitude of maximum shear and normal stress in the composite member.

Keywords

Acknowledgement

This research was supported by the Algerian Ministry of Higher Education and Scientific Research (MESRS) as part of the grant for the PRFU research project n° A01L02UN140120200002 and by the University of Tiaret, in Algeria.

References

  1. Abderezak, R., Rabia, B., Daouadji, T.H., Abbes, B., Belkacem, A. and Abbes, F. (2019), "Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams", Adv. Mater. Res., Int. J., 7(2), 83-103. https://doi.org/10.12989/amr.2018.7.2.083
  2. Abderezak, R., Daouadji, T.H. and Rabia, B. (2020), "Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate", Coupl. Syst. Mech., Int. J., 9(5), 473-498. http://doi.org/10.12989/csm.2020.9.5.473
  3. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021a), "Modeling and analysis of the imperfect FGMdamaged RC hybrid beams", Adv. Computat. Des., Int. J., 6(2), 117-133. http://doi.org/10.12989/acd.2021.6.2.117
  4. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021b), "Aluminum beam reinforced by externally bonded composite materials", Adv. Mater. Res., Int. J., 10(1), 23-44. http://doi.org/10.12989/amr.2021.10.1.023
  5. Abderezak, R., Tahar, H.D., Rabia, B. and Tounsi, A. (2021c), "Mechanical behavior of RC cantilever beams strengthened with FRP laminate plate", Adv. Computat. Des., Int. J., 6(3), 169-190. http://doi.org/10.12989/acd.2021.6.3.169
  6. Abderezak, R., Tahar, H.D., Rabia, B. and Tounsi, A. (2021d), "New proposal for flexural strengthening of a continuous I-steel beam using FRP laminate under thermo-mechanical loading", Struct. Eng. Mech., Int. J., 78(6), 703-714. http://doi.org/10.12989/sem.2021.78.6.703
  7. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021e), "Fiber reinforced polymer in civil engineering: Shear lag effect on damaged RC cantilever beams bonded by prestressed plate", Coupl. Syst. Mech., Int. J., 10(4), 299-316. http://doi.org/10.12989/csm.2021.10.4.299
  8. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021f), "New solution for damaged porous RC cantilever beamsstrengthening by composite plate", Adv. Mater. Res., Int. J., 10(3), 169-194. http://doi.org/10.12989/amr.2021.10.3.169
  9. Aicha, K., Rabia, B., Daouadji, T.H. and Bouzidene, A. (2020), "Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions", Coupl. Syst. Mech., Int. J., 9(6), 575-597. http://doi.org/10.12989/csm.2020.9.6.575
  10. Anil, K.L., Panda, S.K., Sharma, N., Hirwani, C.K. and Topal, U. (2020), "Optimal fiber volume fraction prediction of layered composite using frequency constraints- A hybrid FEM approach", Comput. Concrete, Int. J., 25(4), 303-310. http://doi.org/10.12989/cac.2020.25.4.303
  11. Antar, K., Amara, K., Benyoucef, S., Bouazza, M. and Ellali, M. (2019), "Hygrothermal effects on the behavior of reinforced-concrete beams strengthened by bonded composite laminate plates", Struct. Eng. Mech., Int. J., 69(3), 327-334. https://doi.org/10.12989/sem.2019.69.3.327
  12. Benachour, A., Benyoucef, S. and Tounsi, A. (2008), "Interfacial stress analysis of steel beams reinforced with bonded prestressed FRP plate", Eng. Struct., 30, 3305-3315. https://doi.org/10.1016/j.engstruct.2008.05.007
  13. Benferhat, R., Daouadji, T.H. and Abderezak, R. (2020a), "Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation", Coupl. Syst. Mech., Int. J., 9(6), 499-519. http://doi.org/10.12989/csm.2020.9.6.499
  14. Benferhat, R., Daouadji, T.H. and Abderezak, R. (2020b), "Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis", Adv. Mater. Res., Int. J., 9(4), 265-287. http://doi.org/10.12989/amr.2020.9.4.265
  15. Benferhat, R., Daouadji, T.H. and Abderezak, R. (2021a), "Effect of porosity on fundamental frequencies of FGM sandwich plates", Compos. Mater. Eng., Int. J., 3(1), 25-40. http://doi.org/10.12989/cme.2021.3.1.025
  16. Benferhat, R., Daouadji, T.H. and Abderezak, R. (2021b), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", Compos. Mater. Eng., Int. J., 3(1), 41-55. http://doi.org/10.12989/cme.2021.3.1.041
  17. Benferhat, R., Daouadji, T.H. and Abderezak, R. (2021c), "Analysis and sizing of RC beams reinforced by external bonding of imperfect functionally graded plate", Adv. Mater. Res., Int. J., 10(2), 77-98. http://doi.org/10.12989/amr.2021.10.2.077
  18. Bensattalah, T., Hassaine Daouadji, T. and Zidour, M. (2020), "Influences the Shape of the Floor on the Behavior of Buildings Under Seismic Effect", Proceedings of the 4th International Symposium on Materials and Sustainable Development, pp. 26-42. https://doi.org/10.1007/978-3-030-43268-3_3
  19. Chedad, A., Daouadji, T.H., Abderezak, R., Belkacem, A., Abbes, B., Benferhat, R. and Abbes, F. (2018), "A high-order closed-form solution for interfacial stresses in externally sandwich FGM plated RC beams", Adv. Mater. Res., Int. J., 6(4), 317-328. https://doi.org/10.12989/amr.2017.6.4.317
  20. Chen, H., Song, H., Li, Y. and Safarpour, M. (2020), "Hygro-thermal buckling analysis of polymer-CNT-fiber-laminated nano-composite disk under uniform lateral pressure with the aid of GDQM", Eng. Comput. https://doi.org/10.1007/s00366-020-01102-y
  21. Cheng, X., Zhang, J., Cheng, Y., Guo, X. and Huang, W. (2020), "Effect of curing condition on mechanical properties of scarf-repaired composite laminates", Steel Compos. Struct., Int. J., 37(4), 419-429. https://doi.org/10.12989/scs.2020.37.4.419
  22. Civalek, O. and Avcar, M. (2020a), "Free vibration and buckling analyses of CNT reinforced laminated nonrectangular plates by discrete singular convolution method", Eng. Comput. https://doi.org/10.1007/s00366-020-01168-8
  23. Civalek, O. and Avcar, M. (2020b), "Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method", Eng. Comput. https://doi.org/10.1007/s00366-020-01168-8
  24. Daraei, B., Shojaee, S. and Hamzehei-Javaran, S. (2020), "Free vibration analysis of axially moving laminated beams with axial tension based on 1D refined theories using Carrera unified formulation", Steel Compos. Struct., Int. J., 37(1), 37-49. https://doi.org/10.12989/scs.2020.37.1.037
  25. Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Computat. Des., Int. J., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057
  26. Daouadji, T.H., Boussad, A., Abderezak, R., Benferhat, R., Fazilay, A. and Belkacem, A. (2019), "Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study", Struct. Eng. Mech., Int. J., 72(4), 409-419. https://doi.org/10.12989/sem.2019.72.4.409
  27. Daouadji, T.H., Abderezak, R. and Benferhat, R. (2020), "Flexural performance of wooden beams strengthened by composite plate", Struct. Monitor. Maint., Int. J., 7(3), 233-259. http://doi.org/10.12989/smm.2020.7.3.233
  28. Daouadji, T.H., Tayeb, B., Abderezak, R. and Tounsi, A. (2021a), "New approach of composite wooden beam-reinforced concrete slab strengthened by external bonding of prestressed composite plate: Analysis and modeling", Struct. Eng. Mech., Int. J., 78(3), 319-332. http://doi.org/10.12989/sem.2021.78.3.319
  29. Daouadji, T.H., Abderezak, R., Benferhat, R. and Tounsi, A. (2021b), "Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses", Coupl. Syst. Mech., Int. J., 10(2), 161-184. http://doi.org/10.12989/csm.2021.10.2.161
  30. Daouadji, T.H., Abderezak, R., Benferhat, R. and Tounsi, A. (2021c), "Impact of thermal effects in FRP-RC hybrid cantilever beams", Struct. Eng. Mech., Int. J., 78(5), 573-583. http://doi.org/10.12989/sem.2021.78.5.573
  31. Daouadji, T.H., Abderezak, R. and Benferhat, R. (2021d), "A new model for adhesive shear stress in damaged RC cantilever beam strengthened by composite plate taking into account the effect of creep and shrinkage", Struct. Eng. Mech., Int. J., 79(5), 531-540. http://doi.org/10.12989/sem.2021.79.5.531
  32. Daouadji, T.H., Abderezak, R. and Benferhat, R. (2021e), "Hyperstatic steel structure strengthened with prestressed carbon/glass hybrid laminated plate", Coupl. Syst. Mech., Int. J., 10(5), 393-414. https://doi.org/10.12989/csm.2021.10.5.393
  33. Gomes, G.F., de Almeida, F.A., Ancelotti, A.C. and da Cunha, S.S. (2021), "Inverse structural damage identification problem in CFRP laminated plates using SFO algorithm based on strain fields", Eng. Comput., 37, 3771-3791. https://doi.org/10.1007/s00366-020-01027-6
  34. Guenaneche, B. and Tounsi, A. (2014), "Effect of shear deformation on interfacial stress analysis in plated beams under arbitrary loading", Adhes. Adhes., 48, 1-13. https://doi.org/10.1016/j.ijadhadh.2013.09.016
  35. Hadj, B., Benferhat, R. and Daouadji, T.H. (2021), "Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity", Coupl. Syst. Mech., Int. J., 10(1), 61-77. http://doi.org/10.12989/csm.2021.10.1.061
  36. He, X.J., Zhou, C.Y. and Wang, Y. (2019), "Interfacial stresses in reinforced concrete cantilever members strengthened with fibre-reinforced polymer laminates", Adv. Struct. Eng., 23(2), 277-288. https://doi.org/10.1177/1369433219868933
  37. Henni, M.A.B., Abbes, B., Daouadji, T.H., Abbes, F. and Adim, B. (2021), "Numerical modeling of hygrothermal effect on the dynamic behavior of hybrid composite plates", Steel Compos. Struct., Int. J., 39(6), 751-763. http://doi.org/10.12989/scs.2021.39.6.751
  38. Henriques, D., Goncalves, R., Sousa, C. and Camotim, D. (2020), "GBT-based time-dependent analysis of steel-concrete composite beams including shear lag and concrete cracking effects", Thin-Wall. Struct., 150, 106706. https://doi.org/10.1016/j.tws.2020.106706
  39. Hirwani, C.K. and Panda, S.K. (2020), "Nonlinear transient analysis of delaminated curved composite structure under blast/pulse load", Eng. Comput., 36, 1201-1214. https://doi.org/10.1007/s00366-019-00757-6
  40. Kalita, K., Dey, P., Haldar, S. and Gao, X.Z. (2020), "Optimizing frequencies of skew composite laminates with metaheuristic algorithms", Eng. Comput., 36, 741-761. https://doi.org/10.1007/s00366-019-00728-x
  41. Keshav, V. and Patel, S.N. (2020), "Non-Linear dynamic pulse buckling of laminated composite curved panels", Struct. Eng. Mech., Int. J., 73(2), 181-190. http://doi.org/10.12989/sem.2020.73.2.181
  42. Krour, B., Bernard, F. and Tounsi, A. (2014), "Fibers orientation optimization for concrete beam strengthened with a CFRP bonded plate: A coupled analytical-numerical investigation", Eng. Struct., 56, 218-227. https://doi.org/10.1016/j.engstruct.2013.05.008
  43. Larrinaga, P., Garmendia, L., Pinero, I. and San-Jose, J.T. (2020), "Flexural strengthening of low-grade reinforced concrete beams with compatible composite material: Steel Reinforced Grout (SRG)", Constr. Build. Mater., 235, 117790. https://doi.org/10.1016/j.conbuildmat.2019.117790
  44. Liu, S., Zhou, Y., Zheng, Q., Zhou, J., Jin, F. and Fan, H. (2019), "Blast responses of concrete beams reinforced with steel-GFRP composite bars", Structures, 22, 200-212. https://doi.org/10.1016/j.istruc.2019.08.010
  45. Mercan, K., Ebrahimi, F. and Civale, O. (2020), "Vibration of angle-ply laminated composite circular and annular plates", Steel Compos. Struct., Int. J., 34(1), 141-154. http://doi.org/10.12989/scs.2020.34.1.141
  46. Panjehpour, M., Ali, A.A.A., Voo, Y.L. and Aznieta, F.N. (2014), "Effective compressive strength of strut in CFRP-strengthened reinforced concrete deep beams following ACI 318-11", Comput. Concrete, Int. J., 13(1), 135-165. https://doi.org/10.12989/cac.2014.13.1.135
  47. Panjehpour, M., Farzadnia, N., Demirboga, R. and Ali, A.A.A. (2016), "Behavior of high-strength concrete cylinders repaired with CFRP sheets", J. Civil Eng. Manag., 22(1), 56-64. https://doi.org/10.3846/13923730.2014.897965
  48. Rabahi, A., Daouadji, T.H., Abbes, B. and Adim, B. (2016), "Analytical and numerical solution of the interfacial stress in reinforced-concrete beams reinforced with bonded prestressed composite plate", J. Reinf. Plast. Compos., 35(3), 258-272. https://doi.org/10.1177/0731684415613633
  49. Shahmohammadi, M.A., Azhari, M. and Saadatpour, M.M. (2020), "Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method", Steel Compos. Struct., Int. J., 34(3), 361-376. https://doi.org/10.12989/scs.2020.34.3.361
  50. Smith, S.T. and Teng, J.G. (2002), "Interfacial stresses in plated beams", Eng. Struct., 23(7), 857-871. http://doi.org/10.1016/S0141-0296(00)00090-0
  51. Tanzadeh, H. and Amoushahi, H. (2020), "Analysis of laminated composite plates based on different shear deformation plate theories", Struct. Eng. Mech., Int. J., 75(2), 247-269. http://doi.org/10.12989/sem.2020.75.2.247
  52. Tayeb, B., Daouadji, T.H., Abderezak, R. and Tounsi, A. (2021), "Structural bonding for civil engineering structures: New model of composite I-steel-concrete beam strengthened with CFRP plate", Steel Compos. Struct., Int. J., 41(3), 417-435. https://doi.org/10.12989/scs.2021.41.3.417
  53. Tlidji, Y., Benferhat, R. and Daouadji, T.H. (2021a), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., Int. J., 77(2), 217-229. http://doi.org/10.12989/sem.2021.77.2.217
  54. Tlidji, Y., Benferhat, R., Trinh, L.C., Daouadji, T.H. and Tounsi, A. (2021b), "New state-space approach to dynamic analysis of porous FG beam under different boundary conditions", Adv. Nano Res., Int. J., 11(4), 347-359. https://doi.org/10.12989/.2021.11.4.347
  55. Tounsi, A. (2006), "Improved theoretical solution for interfacial stresses in concrete beams strengthened with FRP plate", Int. J. Solids Struct., 43(14-15), 4154-4174. https://doi.org/10.1016/j.ijsolstr.2005.03.074
  56. Tounsi, A., Daouadji, T.H. and Benyoucef, S. (2008), "Interfacial stresses in FRP-plated RC beams: Effect of adherend shear deformations", Int. J. Adhes. Adhes., 29, 313-351. https://doi.org/10.1016/j.ijadhadh.2008.06.008
  57. Wang, L., Yang, J. and Li, Y.H. (2021), "Nonlinear vibration of a deploying laminated Rayleigh beam with a spinning motion in hygrothermal environment", Eng. Comput., 37, 3825-3841. https://doi.org/10.1007/s00366-020-01035-6
  58. Wang, H., Yan, W. and Li, C. (2020a), "Response of angle-ply laminated cylindrical shells with surfacebonded piezoelectric layers", Struct. Eng. Mech., Int. J., 76(5), 599-611. http://doi.org/10.12989/sem.2020.76.5.599
  59. Wang, Y.H., Yu, J., Liu, J.P., Zhou, B.X. and Chen, Y.F. (2020b), "Experimental study on assembled monolithic steel-prestressed concrete composite beam in negative moment", J. Constr. Steel Res., 167, 105667. https://doi.org/10.1016/j.jcsr.2019.06.004
  60. Yuan, C., Chen, W., Pham, T.M. and Hao, H. (2019), "Effect of aggregate size on bond behaviour between basalt fibre reinforced polymer sheets and concrete", Compos. Part B: Eng., 158, 459-474. https://doi.org/10.1016/j.compositesb.2018.09.089
  61. Zeverdejani, M.K. and Beni, Y.T. (2020), "Effect of laminate configuration on the free vibration/buckling of FG Graphene composites", Adv. Nano Res., Int. J., 8(2), 103-114. http://doi.org/10.12989/anr.2020.8.2.103
  62. Zohra, A., Benferhat, R., Tahar, H.D. and Tounsi, A. (2021), "Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations", Struct. Eng. Mech., Int. J., 77(6), 797-807. http://doi.org/10.12989/sem.2021.77.6.797