과제정보
This work was funded by the Academy of Scientific Research and Technology, Egypt, under Science UP grant No. (6513). The authors, therefore, acknowledge with thanks the Academy of Scientific Research and Technology for financial support.
참고문헌
- Ahmadikia, H., Fazlali, R. and Moradi, A. (2012), "Analytical solution of the parabolic and hyperbolic heat transfer equations with constant and transient heat flux conditions on skin tissue", Int. Commun. Heat Mass Transf., 39(1), 121-130. https://doi.org/10.1016/j.icheatmasstransfer.2011.09.016
- Alzahrani, F.S. and Abbas, I.A. (2020), "Fractional order gl model on thermoelastic interaction in porous media due to pulse heat flux", Geomech. Eng., Int. J., 23(3), 217-225. https://doi.org/10.12989/gae.2020.23.3.217
- Andreozzi, A., Brunese, L., Iasiello, M., Tucci, C. and Vanoli, G.P. (2019), "Modeling Heat Transfer in Tumors: A Review of Thermal Therapies", Annals Biomed. Eng., 47(3), 676-693. https://doi.org/10.1007/s10439-018-02177-x
- Anya, A.I. and Khan, A. (2019), "Reflection and propagation of plane waves at free surfaces of a rotating micropolar fibre-reinforced medium with voids", Geomech. Eng., Int. J., 18(6), 605-614. https://doi.org/10.12989/gae.2019.18.6.605
- Charny, C.K. (1992), Mathematical Models of Bioheat Transfer,
- Debnath, L. and Bhatta, D. (2014), Integral Transforms and their Applications, Chapman and Hall/CRC.
- Dhaliwal, J. (1993), "Uniqueness in generalized nonlocal thermoelasticity", J. Thermal Stress., 16(1), 71-77. https://doi.org/10.1080/01495739308946217
- Eringen, A.C. (1974), "Theory of nonlocal thermoelasticity", Int. J. Eng. Sci., 12(12), 1063-1077. https://doi.org/10.1016/0020-7225(74)90033-0
- Eringen, A.C. (1984a), "Electrodynamics of memory-dependent nonlocal elastic continua", J. Math. Phys., 25(11), 3235-3249. https://doi.org/10.1063/1.526070
- Eringen, A.C. (1984b), "Plane waves in nonlocal micropolar elasticity", Int. J. Eng. Sci., 22(8-10), 1113-1121. https://doi.org/10.1016/0020-7225(84)90112-5
- Eringen, A.C. (1991), "Memory-dependent nonlocal electromagnetic elastic solids and superconductivity", J. Math. Phys., 32(3), 787-796. https://doi.org/https://doi.org/10.1063/1.529372
- Eringen, A.C. (2012), Microcontinuum field theories: I. Foundations and solids, Springer Science & Business Media.
- Ezzat, M.A. (2020), "Modeling of gn type III with MDD for a thermoelectric solid subjected to a moving heat source", Geomech. Eng., Int. J., 23(4), 393-403. https://doi.org/10.12989/gae.2020.23.4.393
- Ezzat, M.A. and El-Bary, A.A. (2017), "Fractional magneto-Thermoelastic materials with phase-lag GreenNaghdi theories", Steel Compos. Struct., Int. J., 24(3), 297-307. https://doi.org/10.12989/scs.2017.24.3.297
- Gardner, C.M., Jacques, S.L. and Welch, A.J. (1996), "Light transport in tissue: Accurate expressions for one-dimensional fluence rate and escape function based upon Monte Carlo simulation", Lasers Surgery Med.: Official J. Am. Soc. Laser Med. Surgery, 18(2), 129-138. https://doi.org/10.1002/(SICI)1096-9101(1996)18:2
- Hassan, M., Marin, M., Ellahi, R. and Alamri, S.Z. (2018), "Exploration of convecti ve heat transfer and flow characteristics synthesis by Cu-Ag/Water hybrid-nanofluids", Heat Transfer Res., 49(18), 1837-1848. https://doi.org/10.1615/HeatTransRes.2018025569
- Henriques Jr, F. and Moritz, A. (1947), "Studies of thermal injury: I. The conduction of heat to and through skin and the temperatures attained therein. A theoretical and an experimental investigation", Am. J. Pathol., 23(4), 530.
- Hobiny, A.D. and Abbas, I.A. (2020), "Fractional order thermoelastic wave assessment in a two-dimension medium with voids", Geomech. Eng., Int. J., 21(1), 85-93. https://doi.org/10.12989/gae.2020.21.1.085
- Hobiny, A. and Abbas, I. (2021a), "Analytical solutions of fractional bioheat model in a spherical tissue", Mech. Based Des. Struct. Mach., 49(3), 430-439. https://doi.org/10.1080/15397734.2019.1702055
- Hobiny, A.D. and Abbas, I.A. (2021b), "Generalized thermo-elastic interaction in a fiber-reinforced material with spherical holes", Struct. Eng. Mech., Int. J., 78(3), 297-303. https://doi.org/10.12989/sem.2021.78.3.297
- Hosseini, S.M. (2020), "A GN-based modified model for size-dependent coupled thermoelasticity analysis in nano scale, considering nonlocality in heat conduction and elasticity: An analytical solution for a nano beam with energy dissipation", Struct. Eng. Mech., Int. J., 73(3), 287-302. https://doi.org/10.12989/sem.2020.73.3.287
- Khan, A.A., Bukhari, S.R., Marin, M. and Ellahi, R. (2019), "Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index", Heat Transfer Res., 50(11), 1061-1080. https://doi.org/10.1615/HeatTransRes.2018028397
- Kumar, R. and Gupta, R.R. (2008), "Response of temperature dependence of an elastic modulus in microstretch generalized thermoelasticity", Struct. Eng. Mech., Int. J., 30(5), 577-592. https://doi.org/10.12989/sem.2008.30.5.577
- Kumar, D. and Rai, K.N. (2020), "Three-phase-lag bioheat transfer model and its validation with experimental data", Mech. Based Des. Struct. Mach. https://doi.org/10.1080/15397734.2020.1779741
- Lata, P. and Kaur, H. (2019), "Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain", Geomech. Eng., Int. J., 19(5), 369-381. https://doi.org/10.12989/gae.2019.19.5.369
- Lata, P. and Kaur, H. (2021), "Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multi-dual-phase-lag heat transfer and two temperature", Steel Compos. Struct., Int. J., 38(2), 213-221. https://doi.org/10.12989/scs.2021.38.2.213
- Lata, P. and Singh, S. (2020), "Deformation in a nonlocal magneto-thermoelastic solid with hall current due to normal force", Geomech. Eng., Int. J., 22(2), 109-117. https://doi.org/10.12989/gae.2020.22.2.109
- Lata, P. and Singh, S. (2021), "Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer", Steel Compos. Struct., Int. J., 38(2), 141-150. https://doi.org/10.12989/scs.2021.38.2.141
- Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., Int. J., 22(3), 567-587. https://doi.org/10.12989/scs.2016.22.3.567
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Marin, M. (1996), "Generalized solutions in elasticity of micropolar bodies with voids", Revista de la Academia Canaria de Ciencias:= Folia Canariensis Academiae Scientiarum, 8(1), 101-106.
- Marin, M. (2010), "Some estimates on vibrations in thermoelasticity of dipolar bodies", JVC/J Vib Control, 16(1), 33-47. https://doi.org/10.1177/1077546309103419
- Marin, M., Vlase, S. and Paun, M. (2015), "Considerations on double porosity structure for micropolar bodies", AIP Adv., 5(3). https://doi.org/10.1063/1.4914912
- Moritz, A.R. and Henriques, F.C. (1947), "Studies of Thermal Injury: II. The Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns", Am. J. Pathol., 23(5), 695-720.
- Noroozi, M.J. and Goodarzi, M. (2017), "Nonlinear analysis of a non-Fourier heat conduction problem in a living tissue heated by laser source", Int. J. Biomathe., 10(8). https://doi.org/10.1142/S1793524517501078
- Pennes, H.H. (1948), "Analysis of tissue and arterial blood temperatures in the resting human forearm", J. Appl. Physiol., 1(2), 93-122. https://doi.org/10.1152/jappl.1948.1.2.93
- Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bouiadjra, R.B., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., Int. J., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065
- Saeed, T. and Abbas, I. (2020), "Finite element analyses of nonlinear DPL bioheat model in spherical tissues using experimental data", Mech. Based Des. Struct. Mach. https://doi.org/10.1080/15397734.2020.1749068
- Saeed, T., Abbas, I. and Marin, M. (2020), "A GL model on thermo-elastic interaction in a poroelastic material using finite element method", Symmetry, 12(3). https://doi.org/10.3390/SYM12030488
- Sarkar, N. (2020), "Thermoelastic responses of a finite rod due to nonlocal heat conduction", Acta Mech., 231(3), 947-955. https://doi.org/10.1007/s00707-019-02583-9
- Sarkar, N., De, S. and Sarkar, N. (2019), "Waves in nonlocal thermoelastic solids of type II", J. Thermal Stress., 42(9), 1153-1170. https://doi.org/10.1080/01495739.2019.1618760
- Sarkar, N., Bachher, M., Das, N., De, S. and Sarkar, N. (2020a), "Waves in nonlocal thermoelastic solids of type III", ZAMM Z. Angew. Math. Mech., 100(4). https://doi.org/10.1002/zamm.201900074
- Sarkar, N., Mondal, S. and Othman, M.I.A. (2020b), "Effect of the laser pulse on transient waves in a nonlocal thermoelastic medium under Green-Naghdi theory", Struct. Eng. Mech., Int. J., 74(4), 471-479. https://doi.org/10.12989/sem.2020.74.4.471
- Sharma, D.K., Bachher, M., Manna, S. and Sarkar, N. (2020), "Vibration analysis of functionally graded thermoelastic nonlocal sphere with dual-phase-lag effect", Acta Mech., 231(5), 1765-1781. https://doi.org/10.1007/s00707-020-02612-y
- Stehfest, H. (1970), "Algorithm 368: Numerical inversion of Laplace transforms [D5]", Commun. ACM, 13(1), 47-49. https://doi.org/10.1145/361953.361969
- Wang, J. and Dhaliwal, R.S. (1993), "On some theorems in the nonlocal theory of micropolar elasticity", Int. J. Solids Struct., 30(10), 1331-1338. https://doi.org/10.1016/0020-7683(93)90215-S
- Xu, F., Seffen, K.A. and Lu, T.J. (2008), "Non-Fourier analysis of skin biothermomechanics", Int. J. Heat Mass Transf., 51(9-10), 2237-2259. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.024
- Zhang, L., Bhatti, M.M., Marin, M. and Mekheimer, K.S. (2020), "Entropy analysis on the blood flow through anisotropically tapered arteries filled with magnetic zinc-oxide (ZnO) nanoparticles", Entropy, 22(10), 1070. https://doi.org/10.3390/E22101070