DOI QR코드

DOI QR Code

Dynamic response of coal and rocks under high strain rate

  • Zhou, Jingxuan (Faculty of Safety Engineering, China University of Mining and Technology) ;
  • Zhu, Chuanjie (Faculty of Safety Engineering, China University of Mining and Technology) ;
  • Ren, Jie (Faculty of Safety Engineering, China University of Mining and Technology) ;
  • Lu, Ximiao (Faculty of Safety Engineering, China University of Mining and Technology) ;
  • Ma, Cong (Faculty of Safety Engineering, China University of Mining and Technology) ;
  • Li, Ziye (Faculty of Safety Engineering, China University of Mining and Technology)
  • Received : 2020.04.05
  • Accepted : 2022.04.03
  • Published : 2022.05.25

Abstract

The roadways surrounded by rock and coal will lose their stability or even collapse under rock burst. Rock burst mainly involves an evolution of dynamic loading which behaves quite differently from static or quasi-static loading. To compare the dynamic response of coal and rocks with different static strengths, three different rocks and bituminous coal were selected for testing at three different dynamic loadings. It's found that the dynamic compression strength of rocks and bituminous coal is much greater than the static compression strength. The dynamic compression strength and dynamic increase factor of the rocks both increase linearly with the increase of the strain rate, while those of the bituminous coal are irregular due to the characteristics of multi-fracture and heterogeneity. Moreover, the absorbed energy of the rocks and bituminous coal both increase linearly with an increase in the strain rate. And the ratio of absorbed energy to the total energy of bituminous coal is greater than that of rocks. With the increase of dynamic loading, the failure degree of the sample increases, with the increase of the static compressive strength, the damage degree also increases. The static compassion strength of the bituminous coal is lower than that of rocks, so the number of small-scale fragments was the largest after bituminous coal rupture.

Keywords

Acknowledgement

Financial support provided by the National Natural Science Foundation of China (NSFC) (Grant Number: 51874293) and National Science and Technology Major Project (Grant Number: 2020YFA0711803) for this research is gratefully acknowledged.

References

  1. Abrams, D.A. (1917), "Effect of rate of application of load on the compressive strength of concrete", ASTM J, 17(2), 364-377.
  2. Bieniawski, Z.T. (1968), "Fracture dynamics of rock", Fract. Mech., 4(4), 415-430. https://doi.org/10.1007/BF00186807.
  3. Blanton, T.L. (1981), "Effect of strain rates from 10 -2 to 10 sec -1 in triaxial compression tests on three rocks", Int. J. Rock. Mech. Min., 18(1), 47-62. https://doi.org/10.1016/0148-9062(81)90265-5.
  4. Botto, R.E., Cody, G.D., Kirz, J., Ade, H., Behal, S. and Disko, M. (1994), "Selective chemical mapping of coal microheterogeneity by scanning transmission x-ray microscopy", Energ. Fuel., 8(1), 151-154. https://doi.org/10.1021/ef00043a026.
  5. Brown, E.T. and Hoek, E. (1978), "Trends in relationships between measured in-situ stresses and depth", Int. J. Rock. Mech. Min., 15(4), 211-215. https://doi.org/10.1016/0148-9062(78)91227-5.
  6. Cai, M. (2008), "Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries-Insight from numerical modeling", Int. J. Rock. Mech. Min., 45(5), 763-772. https://doi.org/10.1016/j.ijrmms.2007.07.026.
  7. Chakraborty, T., Mishra, S., Loukus, J., Halonen, B. and Bekkala, B. (2016), "Characterization of three Himalayan rocks using a split Hopkinson pressure bar", Int. J. Rock. Mech. Min., 85, 112-118. https://doi.org/10.1016/j.ijrmms.2016.03.005.
  8. Chen, S., Yin, D. and Jiang, N. (2019), "Simulation study on effects of loading rate on uniaxial compression failure of composite rock-coal layer", Geomech.Eng., 17(4), 333-342. https://doi.org/10.12989/gae.2019.17.4.333.
  9. Cho, S.H., Ogata, Y. and Kaneko, K. (2003), "Strain-rate dependency of the dynamic tensile strength of rock", Int. J. Rock. Mech. Min., 40(5), 763-777. https://doi.org/10.1016/S1365-1609(03)00072-8.
  10. Crespo, M., Rio, G.D. and Rodriguez, J. (2017), "Failure of SLS polyamide 12 notched samples at high loading rates", Theor. Appl. Fract. Mech., 92, 233-239. https://doi.org/10.1016/j.tafmec.2017.08.008.
  11. Davies, E.D.H. and Hunter, S.C. (1963), "The dynamic compression testing of solids by the method of the split Hopkinson pressure bar", Mech. Phys. Solids, 11(3), 155-179. https://doi.org/10.1016/0022-5096(63)90050-4.
  12. Demirdag, S., Tufekci, K., Kayacan, R., Yavuz, H. and Altindag, R. (2010), "Dynamic mechanical behavior of some carbonate rocks", Int. J. Rock. Mech. Min., 47(2), 307-312. https://doi.org/10.1016/ j.ijrmms.2009.12.003.
  13. Erarslan, N. and Williams, D.J. (2012), "The damage mechanism of rock fatigue and its relationship to the fracture toughness of rocks", Int. J. Rock. Mech. Min., 56, 15-26. https://doi.org/10.1016/ j.ijrmms.2012.07.015..
  14. Feng, J., Wang, E. and Shen, R. (2016), "Investigation on energy dissipation and its mechanism of coal under dynamic loads", Geomech. Eng., 11(5), 657-670. https://doi.org/10.12989/gae.2016.11.5.657.
  15. Field, J.E., Walley, S.M., Proud, W.G., Goldrein, H.T. and Siviour, C.R. (2004), "Review of experimental techniques for high rate deformation and shock studies", Int. J. Impact Eng., 30(7), 725-775. https://doi.org/10.1016/j.ijimpeng.2004.03.005.
  16. Frew, D.J., Forrestal, M.J. and Chen, W. (2001), "A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials", Exp. Mech., 41(1), 40-46. https://doi.org/10.1007/ BF02323102.
  17. Gama, B.A., Lopatnikov, S.L. and Gillespie, J.W. (2004), "Hopkinson bar experimental technique: A critical review", Appl. Mech.Rev., 57(4), 223. https://doi.org/10.1115/1.1704626.
  18. He, M.C., Sousa, L.R.E., Miranda, T. and Zhu, G.L. (2015), "Rockburst laboratory tests database - Application of data mining techniques", Eng. Geol., 185, 116-130. https://doi.org/10.1016/j.enggeo.2014.12.008.
  19. Hogan, J.D., Rogers, R.J., Spray, J.G. and Boonsue, S. (2012), "Dynamic fragmentation of granite for impact energies of 6-28 J", Eng. Fract. Mech., 79, 103-125. https://doi.org/10.1016/j.engfracmech.2011.10.006.
  20. Hokka, M., Black, J., Tkalich, D., Fourmeau, M., Kane, A., Hoang, N.H., Li, C.C. and Chen, W.W. (2016), "Effects of strain rate and confining pressure on the compressive behavior of Kuru granite", Int. J. Impact Eng., 91, 183-193. https://doi.org/10.1016/j.ijimpeng.2016.01.010.
  21. John, R., Shah, S.P. and Jeng, Y.S. (1987), "A fracture mechanics model to predict the rate sensitivity of mode I fracture of concrete", Cement Concr. Res., 17(2), 249-262. https://doi.org/10.1016/0008-8846(87)90108-6.
  22. Kim, E., Garcia, A. and Changani, H. (2018), "Fragmentation and energy absorption characteristics of Red, Berea and Buff sandstones based on different loading rates and water contents", Geomech. Eng., 14(2), 151-159. https://doi.org/10.12989/gae.2018.14.2.000.
  23. Kolsky, H. (1964), "Stress waves in solids", J. Sound Vib., 1(1), 88-110. https://doi.org/10.1016/0022-460X(64)90008-2.
  24. Li, J.C., Ma, G.W. and Zhou, Y.X. (2012), "Analytical Study of Underground Explosion-Induced Ground Motion", Rock. Mech. Rock. Eng., 45(6), 1037-1046. https://doi.org/ 10.1007/s00603-011-0200-3.
  25. Li, Q.M. and Meng, H. (2003), "About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test", Int. J. Solids Struct., 40(2), 343-360. https://doi.org/10.1016/S0020-7683(02)00526-7.
  26. Li, S., Tang, D.Z., Xu, H. and Yang, Z. (2012), "Advanced characterization of physical properties of coals with different coal structures by nuclear magnetic resonance and X-ray computed tomography", Comput. Geosci., 48(48), 220-227. https://doi.org/10.1016/j.cageo.2012.01.004.
  27. Li, X.B., Lok, T.S. and Zhao, J. (2005), "Dynamic characteristics of granite subjected to intermediate loading rate", Rock. Mech. Rock. Eng., 38(1), 21-39. https://doi.org/10.1007/s00603-004-0030-7.
  28. Li, Y., Zhang, S. and Zhang, B. (2018), "Dilatation characteristics of the coals with outburst proneness under cyclic loading conditions and the relevant applications", Geomech. Eng., 14(5), 459-466. https://doi.org/ 10.12989/gae.2018.14.5.459.
  29. Liu, H.Y., Roquete, M. and Kou, S.Q. (2004), "Characterization of rock heterogeneity and numerical verification", Eng. Geol., 72(1-2), 89-119. https://doi.org/10.1016/j.enggeo.2003.06.004.
  30. Liu, K., Zhang, Q.B., Wu, G., Li, JC. and Zhao, J. (2019), "Dynamic mechanical and fracture behaviour of sandstone under multiaxial loads using a triaxial Hopkinson bar", Rock. Mech. Rock. Eng., (52), 2175-2195. https://doi.org/10.1007/s00603-018-1691-y.
  31. Liu, S. and Xu, J.Y. (2015), "Effect of strain rate on the dynamic compressive mechanical behaviors of rock material subjected to high temperatures", Mech. Mater., 82, 28-38. https://doi.org/10.1016/ j.mechmat.2014.12.006.
  32. Liu, T., Lin, B. and Yang, W. (2017), "Impact of matrix-fracture interactions on coal permeability: Model development and analysis", Fuel, 207, 522-532. https://doi.org/10.1016/j.fuel.2017.06.125.
  33. Meng, Q., Zhang, M., Han, L., Pu, H. and Nie, T. (2016), "Effects of acoustic emission and energy evolution of rock specimens under the uniaxial cyclic loading and unloading compression", Rock. Mech. Rock. Eng., 49(10), 1-14. https://doi.org/10.1007/s00603-016-1077-y.
  34. Read, R.S. (2004), "20 years of excavation response studies at AECL's Underground Research Laboratory", Int. J. Rock. Mech. Min., 41(8), 1251-1275. https://doi.org/10.1016/j.ijrmms.2004.09.012.
  35. Reinhardt, B.H.W. and Cornelissen, H.A.W. (1986), "Tensile tests and failure analysis of concrete", J. Struct. Eng., 112, 2462-2477. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:11(2462).
  36. Ren, W., Xu, J., Liu, J. and Su, H. (2015), "Dynamic mechanical properties of geopolymer concrete after water immersion", Ceram. Int., 41(9), 11852-11860. https://doi.org/10.1016/j.ceramint.2015.05.154.
  37. Tao, M., Ma, A., Cao, W., Li, X. and Gong, F. (2017), "Dynamic response of pre-stressed rock with a circular cavity subject to transient loading", Int. J. Rock. Mech. Min., 99, 1-8. https://doi.org/ 10.1016/j.ijrmms.2017.09.003
  38. Tarasov, B.G. (1990), "Simplified method for determining the extent to which strain rate affects the strength and energy capacity of rock fracture", Sov.Min.Sci., 26(4), 315-320. https://doi.org/10.1007/BF02506510.
  39. Wang, J.A. and Park, H.D. (2001), "Comprehensive prediction of rockburst based on analysis of strain energy in rocks", Tunn.Undergr. Sp.Tech., 16(1), 49-57. https://doi.org/10.1016/S0886-7798(01)00030-X.
  40. Wang, Q.Z., Li, W. and Song, X.L. (2006), "A Method for Testing Dynamic Tensile Strength and Elastic Modulus of Rock Materials Using SHPB", Pure Appl. Geophys., 163(5-6), 1091-1100. https://doi.org/ 10.1007/s00024-006-0056-8.
  41. Wang, T., Song, Z. and Yang, J. (2019), "Experimental research on dynamic response of red sandstone soil under impact loads", Geomech.Eng., 17(4), 393-403. https://doi.org/10.12989/gae.2019.17.4.393.
  42. Wla, B., Jya, B., Peng, Y., Ming, C., Cza, B., Yi, L. and Li, J. (2012), "Dynamic response of rock mass induced by the transient release of in-situ stress", Int. J. Rock. Mech. Min., 53, 129-141. https://doi.org/ 10.1016/j.ijrmms.2012.05.001
  43. Yameogo, S., Corthesy, R. and Leite, M.H. (2013), "Influence of rock failure and damage on in situ stress measurements in brittle rock", Int. J. Rock. Mech. Min., 61, 118-129. https://doi.org/10.1016/j.ijrmms.2013.02.011.
  44. Yao, W., Xu, Y. and Yu, C. (2017), "A dynamic punch-through shear method for determining dynamic Mode II fracture toughness of rocks", Eng. Fract. Mech., 176, 161-177. https://doi.org/10.1016/ j.engfracmech.2017.03.012.
  45. Yavuz, H., Tufekci, K., Kayacan, R. and Cevizci, H. (2013), "Predicting the Dynamic Compressive Strength of Carbonate Rocks from Quasi-Static Properties", Exp. Mech., 53(3), 367-376. https://doi.org/10.1007/s11340-012-9648-7.
  46. Yilmaz, O. and Unlu, T. (2013), "Three-dimensional numerical rock damage analysis under blasting load", Tunn. Under. Sp. Tech., 38, 266-278. https://doi.org/ 10.1016/j.tust.2013.07.007.
  47. Zhang, X.X., Yu, R.C., Ruiz, G. Tarifa, M. and Camara, M.A. (2010), "Effect of loading rate on crack velocities in HSC", Int. J. Impact Eng., 37(4), 359-370. https://doi.org/10.1016/j.ijimpeng.2009.10.002.
  48. Zhou, Z., Li, X., Ye, Z. and Liu, K. (2010), "Obtaining constitutive relationship for rate-dependent rock in SHPB tests", Rock. Mech. Rock. Eng., 43(6), 697-706. https://doi.org/10.1007/s00603-010-0096-3.
  49. Zhu, C.J., Lin, B.Q., Jiang, B.Y., Liu, Q. and Sun, Y.M. (2013), "Multiphase destructive effects of shock wave resulting from coal mine gas explosion", J. China. U. Min. Techno., 42(5), 718-724+730. https://doi.org/10.13247/j.cnki.jcumt.2013.05.003.
  50. Zhu, J.B., Liao, Z.Y. and Tang, C.A. (2016), "Numerical SHPB tests of rocks under combined static and dynamic loading conditions with application to dynamic behavior of rocks Under in situ stresses", Rock. Mech. Rock. Eng., 49(10), 1-12. https://doi.org/ 10.1016/j.ijimpeng.2012.04.002.