DOI QR코드

DOI QR Code

A HIGHER ORDER SPLIT LEAST-SQUARES CHARACTERISTIC MIXED ELEMENT METHOD FOR SOBOLEV EQUATIONS

  • Ohm, Mi Ray (Division of Mechatronics Engineering Dongseo University) ;
  • Shin, Jun Yong (Department of Applied Mathematics Pukyong National University)
  • Received : 2022.01.21
  • Accepted : 2022.04.03
  • Published : 2022.05.18

Abstract

In this paper, we introduce a higher order split least-squares characteristic mixed element scheme for Sobolev equations. First, we use a characteristic mixed element method to manipulate both convection term and time derivative term efficiently and obtain the system of equations in the primal unknown and the flux unknown. Second, we define a least-squares minimization problem and a least-squares characteristic mixed element scheme. Finally, we obtain a split least-squares characteristic mixed element scheme for the given problem whose system is uncoupled in the unknowns. We establish the convergence results for the primal unknown and the flux unknown with the second order in a time increment.

Keywords

Acknowledgement

This work was supported by a Research Grant of Pukyong National University(2021).

References

  1. T. Arbogast and M. Wheeler, A characteristics-mixed finite element method for advection-dominated transport problem, SIAM J. Numer. Anal. 32(2) (1995), 404-424. https://doi.org/10.1137/0732017
  2. G. I. Barenblatt, I. P. Zheltov and I. N. Kochian, Basic conception in the theory of seepage of homogenous liquids in fissured rocks, J. Appl. Math. Mech. 24 (1960), 1286-1309. https://doi.org/10.1016/0021-8928(60)90107-6
  3. K. Boukir, Y. Maday and B. Metivet, A high-order characteristics/finite element method for the incompressible navier-stokes equations, Inter. Jour. Numer. Methods in Fluids. 25 (1997), 1421-1454. https://doi.org/10.1002/(SICI)1097-0363(19971230)25:12<1421::AID-FLD334>3.0.CO;2-A
  4. Z. Chen, Characteristic mixed discontinuous finite element methods for advection-dominated diffusion problems, Comput. Methods. Appl. Mech. Engrg. 191 (2002), 2509-2538. https://doi.org/10.1016/S0045-7825(01)00411-X
  5. Z. Chen, R. Ewing, Q. Jiang and A. Spagnuolo, Error analysis for characteristics-based methods for degenerate parabolic problems, SIAM J. Numer. Anal. 40(4) (2002), 1491-1515. https://doi.org/10.1137/S003614290037068X
  6. C. Dawson, T. Russell and M. Wheeler, Some improved error estimates for the modified method of characteristics, SIAM J. Numer. Anal. 26(6) (1989), 1487-1512. https://doi.org/10.1137/0726087
  7. J. Douglas and T. F. Russell Jr., Numerical methods for convection-dominated diffusion problems based on combining the method of characteristic with finite element or finite difference procedures, SIAM J. Numer. Anal. 19 (1982), 871-885. https://doi.org/10.1137/0719063
  8. R. E. Ewing, Time-stepping Galerkin methods for nonlinear Sobolev equations, SIAM J. Numer. Anal. 15 (1978), 1125-1150. https://doi.org/10.1137/0715075
  9. F. Gao and H. Rui, A split least-squares characteristic mixed finite element method for Sobolev equations with convection term, Math. Comput. Simulation 80 (2009), 341-351. https://doi.org/10.1016/j.matcom.2009.07.003
  10. H. Gu, Characteristic finite element methods for nonlinear Sobolev equations, Applied Math. Comput. 102 (1999), 51-62. https://doi.org/10.1016/S0096-3003(98)10019-X
  11. H. Guo, A remark on split least-squares mixed element procedures for pseudo-parabolic equations, Applied Math. Comput. 217 (2011), 4682-4690. https://doi.org/10.1016/j.amc.2010.11.021
  12. L. Guo and H. Z. Chen, H1-Galerkin mixed finite element method for the Sobolev equation, J. Sys. Sci. 26 (2006), 301-314.
  13. H. Guo and H. X. Rui, Least-squares Galerkin mixed finite element method for the Sobolev equation, Acta Math. Appl. Sinica 29 (2006), 609-618. https://doi.org/10.3321/j.issn:0254-3079.2006.04.004
  14. X. Long and C. Chen, Implicit-Explicit multistep characteristic finite element methods for nonlinear convection-diffusion equations, Numer. Methods Parial Differential Eq. 23 (2007), 1321-1342. https://doi.org/10.1002/num.20222
  15. M. R. Ohm and H. Y. Lee, L2-error analysis of fully discrete discontinuous Galerkin approximations for nonlinear Sobolev equations, Bull. Korean. Math. Soc. 48(5) (2011), 897-915. https://doi.org/10.4134/BKMS.2011.48.5.897
  16. M. R. Ohm, H. Y. Lee and J. Y. Shin, L2 -error analysis of discontinuous Galerkin approximations for nonlinear Sobolev equations, J. Japanese Indus. Appl. Math. 30(1) (2013), 91-110. https://doi.org/10.1007/s13160-012-0096-7
  17. M. R. Ohm and J. Y. Shin, A split least-squares characteristics mixed finite element method for the convection dominated Sobolev equations, J. Appl. Math. Informatics. 34(1) (2016), 19-34. https://doi.org/10.14317/jami.2016.019
  18. M. R. Ohm and J. Y. Shin, A split least-squares characteristics mixed element method for Sobolev equations with a convection term, East Asian Math. J. 35(5) (2019), 569-587. https://doi.org/10.7858/EAMJ.2019.045
  19. A. Pehlivanov, G. F. Carey and D. Lazarov, Least-squares mixed finite elements for second-order elliptic problems, SIAM J. Numer. Anal. 31 (1994), 1368-1377. https://doi.org/10.1137/0731071
  20. P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, in Proc. Conf. on Mathemaical Aspects of Finite Element Methods, Lecture Notes in Math., Vol. 606, Springer-Verlag, Berlin, 1977, 292-315.
  21. H. X. Rui, S. Kim and S. D. Kim, A remark on least-squares mixed element methods for reaction-diffusion problems, J. Comput. Appl. Math. 202 (2007), 203-236. https://doi.org/10.1016/j.cam.2006.02.025
  22. D. M. Shi, On the initial boundary value problem of the nonlinear equation of the migration of the moisture in soil, Acta math. Appl. Sinica 13 (1990), 31-38.
  23. T. W. Ting, A cooling process according to two-temperature theory of heat conduction, J. Math. Anal. Appl. 45 (1974), 23-31. https://doi.org/10.1016/0022-247X(74)90116-4
  24. D. P. Yang, Some least-squares Galerkin procedures for first-order time-dependent convection-diffusion system, Comput. Methods Appl. Mech. Eng. 108 (1999), 81-95. https://doi.org/10.1016/S0045-7825(99)00050-X
  25. D. P. Yang, Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection-diffusion problems, Math. Comput. 69 (2000), 929-963. https://doi.org/10.1090/S0025-5718-99-01172-2
  26. J. Zhang amd H. Guo, A split least-squares characteristic mixed element method for nonlinear nonstationary convection-diffusion problem, Int. J. Comput. Math. 89 (2012), 932-943. https://doi.org/10.1080/00207160.2012.667086