DOI QR코드

DOI QR Code

다양한 수생태계에 적용 가능한 유해물질의 영양확대계수 (trophic magnification factor, TMF) 연구 - 생활화학제품에서 기인한 성분과 어류조사를 중심으로

A Direction of the Monitoring of Household Chemical Products in Aquatic Environments: The Necessities for a Trophic Magnification Factor (TMF) Research on Fish

  • 원은지 (한양대학교 해양대기과학연구소) ;
  • 조하은 (한양대학교 해양융합과학과) ;
  • 김도균 (한양대학교 해양융합과학과) ;
  • 홍성진 (충남대학교 해양환경과학과) ;
  • 신경훈 (한양대학교 해양대기과학연구소)
  • Eun-Ji Won (Institute of Ocean & Atmospheric Science, Hanyang University) ;
  • Ha-Eun Cho (Department of Marine Sciences and Convergent Technology, Hanyang University) ;
  • Dokyun Kim (Department of Marine Sciences and Convergent Technology, Hanyang University) ;
  • Seongjin Hong (Department of Ocean Environmental Sciences, Chungnam National University) ;
  • Kyung-Hoon Shin (Institute of Ocean & Atmospheric Science, Hanyang University)
  • 투고 : 2022.08.16
  • 심사 : 2022.09.16
  • 발행 : 2022.09.30

초록

수환경 내 다양한 유해물질의 위해성에 대한 관심은 환경 매체 내 물질의 농도뿐만 아니라 복잡한 먹이단계를 통한 어류 체내의 축적과 어류를 통한 인체 위해성으로 이어진다. 국내의 경우 2016년 이후 생활에서 사용되고 있는 화학제품(생활화학제품) 기인 위해 우려물질의 관리를 위한 등록과 평가 등에 관한 법률 개정과 함께 이들 물질의 환경 배출이 주목받게 됨에 따라 수생태계 내 잔류여부에 대한 조사도 수행되기 시작했다. 최근에는 이러한 물질의 관리를 위한 생태계 내 분포 조사 및 배출 계수 산정을 위한 연구사업이 수행되고 있는데 해당 연구 사업에서는 세정제, 접착제, 염색제, 방향제 등을 비롯한 화장품이나 세제 등에 포함되는 성분과 살균·소독제를 대상으로 영양단계 내 축적과 전달을 이해하기 위한 물질의 축적과 확대를 포함한다. 본 논문은 최근 발표된 생활화학제품기인 유해물질의 수환경 유입 및 분포에 대한 연구 결과를 정리하고 그 과학적 의미를 제시하며 또한 국내외 수행되고 있는 수환경 모니터링 기법에 대한 연구의 예를 바탕으로 현재 유해화학물질의 수환경 내 잔류 농도 및 분포, 생태계 모니터링을 위한 연구의 방향을 제안하고자 한다. 특히 어류를 대상으로 하는 조사에서 국내 수역에 서식하는 주요 어류조사 및 이를 바탕으로 한 대상 어류 선정의 필요성과 인체 위해성 연구의 필요성 등 시기적으로 요구되는 연구를 위한 영양단계 해석과 생물확대계수 연구의 방향을 소개하며 향후 국내에서 수행되고 있는 생물상 모니터링과 화학물질 연구에 대한 제언을 포함한다.

The risk of various hazardous substances in aquatic environment comprises not only the concentration of substances in the environmental medium but also their accumulation in fish through complex food web and the health risks to humans through the fish. In Korea, the monitoring of residual toxicant in aquatic ecosystems began in 2016 following the enforcement of the Acts on registration and evaluation for the management of chemicals used in daily life (consumer chemical products), and attention has been paid to potentially hazardous substances attributed to them. Recently, studies have been carried out to investigate the distribution of these hazardous substances in the ecosystem and calculate their emission factors. These include the accumulation and transport of substances, such as detergents, dyes, fragrances, cosmetics, and disinfectants, within trophic levels. This study summarizes the results of recently published research on the inflow and distribution of hazardous substances from consumer chemical products to the aquatic environment and presents the scientific implication. Based on studies on aquatic environment monitoring techniques, this study suggests research directions for monitoring the residual concentration and distribution of harmful chemical substances in aquatic ecosystems. In particular, this study introduces the directions for research on trophic position analysis using compound specific isotope analysis and trophic magnification factors, which are needed to fulfill the contemporary requirements of selecting target fish based on the survey of major fish that inhabit domestic waters and assessment of associated health risk. In addition, this study provides suggestions for future biota monitoring and chemical research in Korea.

키워드

과제정보

본 연구는 2022년 환경부에서 지원하는 생활화학제품 안전관리 기술개발사업을 통해 한국환경산업기술원(KEITI)의 지원을 받았습니다 [2020002970007, 1485018715].

참고문헌

  1. ABC Laboratories Inc. 1989a. Soil/sediment adsorption-desorption of 14C-didecyldimethylammoniumchloride (14C-DDAC). ABC Final Report Number 37009. Submitted to Lonza Inc., Fair Lawn, NJ.
  2. An, K.-G., K.-I. Kim and J.-H. Kim. 2007. Biological water quality assessments in wastewater-ompacted and non-impacted streams. Korean Journal of Limnolgy 40(1): 82-92.
  3. An, Y., S. Hong, Y. Kim, M. Kim, B. Choi, E. Won and K.-H. Shin. 2020. Trophic transfer of persistent toxic substances through a coastal food web in Ulsan Bay, South Korea: Application of compounds-specific isotope analysis of nitrogen in amino acids. Environmental Pollution 266: 115160.
  4. Atwell, L., K.A. Hobson and H.E. Welch. 1998. Biomagnification and bioaccumulation of mercury in an arctic marine food web: insights from stable nitrogen isotope analysis. Canadian Journal of Fisheries and Aquatic Sciences 55(5): 1114-1121. https://doi.org/10.1139/f98-001
  5. Bassarab, P., D. Williams, J.R. Dean, E. Ludkin and J.J. Perry. 2011. Determination of quaternary ammonium compounds in seawater samples by solid-phase extraction and liquid chromatography-mass spectrometry. Journal of Chromatography A 1218(5): 673-677. https://doi.org/10.1016/j.chroma.2010.11.088
  6. Borga, K., K.A. Kidd, D.CG. Muir, O. Berglund, J.M. Conder, F.A. Gobas, J. Kucklick, O. Malm and D.E. Powell. 2012. Trophic magnification factors: considerations of ecology, ecosystems, and study design. Integrated Environmental Assessment and Management 8(1): 64-84. https://doi.org/10.1002/ieam.244
  7. CCME, Canadian Council of Ministers of the Environment. 1999. Canadian water quality guidelines for the protection of aquatic life: DDAC. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg.
  8. Cho, C., J.G. Cho, I. Eom, B. Lee, S. Kim, K. Choi and J. Yoon. 2010. Bioconcentration of perfluorinated compounds in fish from Gulpo stream. Environmental Health & Toxicology 25(3): 229-240.
  9. Choi, B. and K.-H. Shin. 2018. Applications and prospects of stable isotope in aquatic ecology and environmental study. Korean Journal of Ecology and Environment 51(1): 96-104. https://doi.org/10.11614/KSL.2018.51.1.096
  10. Choi, B., C. Lee, Y. Takizawa, Y. Chikaraishi, H.-J. Oh, K.-H. Chang, M.-H. Jang, H.-W. Kim, K.-L. Lee and K.-H. Shin. 2020. Trophic response to ecological conditions of habitats: Evidence from trophic variability of freshwater fish. Ecology and Evolution 10: 7250-7260. https://doi.org/10.1002/ece3.6451
  11. Choi, H., B. Choi and K.-H. Shin. 2017. Determination of trophic position using nitrogen isotope ration of individual amino acid in the Geum estuary. Korean Journal of Ecology and Environment 50(4): 432-440. https://doi.org/10.11614/KSL.2017.50.4.432
  12. Choo, G., H.-S. Cho, K. Park, J.-W. Lee and P. Kim. 2018. Tissue-specific distribution and bioaccumulation potential of organophosphate flame retardants in crucian carp. Environmental Pollution 239: 161-168. https://doi.org/10.1016/j.envpol.2018.03.104
  13. Cunningham, P.A., E.E. Sullivan, K.H. Everett, S.S. Kovach, A. Rajan and M.C. Barber. 2019. Assessment of metal contamination in Arabian/Persian Gulf fish: A review. Marine Pollution Bulletin 143: 264-283.
  14. Deng, D., H. Chen and N.F.Y. Tam. 2015. Temporal and spatial contamination of polybrominated diphenyl ethers (PBDEs) in wastewater treatment plants in Hong Kong. Science of The Total Environment 502: 133-142. https://doi.org/10.1016/j.scitotenv.2014.08.090
  15. Gadzala-Kopciuch, R., B. Berecka, J. Bartoszewicz and B. Buszewski. 2004. Some considerations about bioindicators in environmental monitoring. Polish Journal of Environmental Studies 13(5): 453-460.
  16. Grand View Research. 2020. Surface Disinfectant Market Size, Share & Trends Analysis Report By Composition (Chemical, Biobased), By Form (Liquid, Wipes), By End-use (HORECA, Hospitals), By Application, And Segment Forecasts, 2022-2030, Report ID: GCR-4-58038-721-6.
  17. Guo, J., J. Mo, Q. Qi, J. Peng, G. Qi, M. Kanerva, H. Iwata and Q. Li. 2021. Prediction of adverse effects of effluents containing phenolic compounds in the Ba River on the ovary of fish (Hemiculter leucisculus) using transcriptomic and metabolomic analyses. Science of The Total Environment 801: 149554.
  18. Hirose, R., R. Bandou, H. Ikegaya, N. Watanabe, T. Yoshida, T. Daidoji, Y. Naito, Y. Itoh and T. Nakaya. 2021. Disinfectant effectiveness against SARS-CoV-2 and influenza viruses present on human skin: model-based evaluation. Clinical Microbiology and Infection 27(7): 1042. e1-1042.e4.
  19. Hong, S., J.S. Khim, T. Wang, J.E. Naile, J. Park, B.-O. Kwon, S.J. Song, J. Ryu, G. Codling, P.D. Jones, Y. Lu and J.P. Giesy. 2015. Bioaccumulation characteristics of perfluoroakyl acids (PFAAs) in coastal organisms from the west coast of South Korea. Chemosphere 129: 157-163. https://doi.org/10.1016/j.chemosphere.2014.06.023
  20. Hong, W.J., H. Jia, C. Liu, Z. Zhang, Y. Sun and Y.F. Li. 2014. Distribution, source, fate and bioaccumulation of methyl siloxanes in marine environment. Environmental Pollution 191: 175-181. https://doi.org/10.1016/j.envpol.2014.04.033
  21. Hu, Z., Y. Shi and Y. Cai. 2011. Concentrations, distribution, and bioaccumulation of synthetic musks in the Haihe River of China. Chemosphere 84(11): 1630-1635. https://doi.org/10.1016/j.chemosphere.2011.05.013
  22. Hung, M.D., N.H. Lam, H.J. Jeong, G.H. Park, P.J. Kim, J.E. Oh and H.S. Cho. 2019. Perfluoroalkyl substances(PFASs) in ten edible freshwater fish species from major rivers and lakes in Korea: distribution and human exposure by consumption. Toxicology and Environmental Health Sciences 10: 307-320.
  23. Institute of Public Health and Environment. 2014. A study on ecotoxicity of public sewage treatment plants in Incheon using Daphnia Magna. Report(in Korean).
  24. Ishikawa, N.F. 2018. Use of compound-specific nitrogen isotope analysis of amino acids in trophic ecology: assumptions, applications, and implications. Ecological Research 33(5): 825-837. https://doi.org/10.1007/s11284-018-1616-y
  25. Jennings, S. and J. van der Molen. 2015. Trophic levels of marine consumers from nitrogen stable isotope analysis: Estimation and uncertainty. ICES. Journal of Marine Science 72(8): 2289-2300. https://doi.org/10.1093/icesjms/fsv120
  26. Jeong, D.-H., S.-Y. Ham, W. Lee, H. Chung and H. Kim. 2017. Study on occurrence and management of organic micro-pollutants in sewer systems. Journal of Korean Society of Water and Wastewater 31(6): 551-566. https://doi.org/10.11001/jksww.2017.31.6.551
  27. Jezierska, B. and M. Witeska. 2006. The metal uptake and accumulation in fish living in polluted waters. Soil and Water Pollution Monitoring, Protection and Remediation 3-23.
  28. Juergensen, L., J. Busnarda, P.-Y. Caux and R.A. Kent. 2000. Fate, behavior, and aquatic toxicity of the fungicide DDAC in the Canadian environment. Environmental Toxicology 15(3): 174-200. https://doi.org/10.1002/1522-7278(2000)15:3<174::AID-TOX4>3.0.CO;2-P
  29. Kasprzyk-Hordern, B., R.M. Dinsdale and A.J. Guwy. 2009. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Research 43: 363-380. https://doi.org/10.1016/j.watres.2008.10.047
  30. Keppeler, F.W., C.G. Montana and K.O. Winemiller. 2020. The relationship between trophic level and body size in fishes depends on functional traits. Ecological Monographs 90(4): e01415.
  31. Kim, D., H.-E. Cho, E.-J. Won, H.-J. Kim, S. Lee, K.-G. An, H.B. Moon and K.-H. Shin. 2022. Environmental fate and trophic transfer of synthetic musk compounds and siloxanes in Geum River, Korea: Compound-specific nitrogen isotope analysis of amino acids for accurate trophic position estimation. Environment International 161: 107123.
  32. Kim, H.-J. and K.-G. An. 2020. Impacts of stream water quality and fish histopathology by effluents of wastewater treatment plant. Korean Journal of Environmental Biology 38(4): 678-690. https://doi.org/10.11626/KJEB.2020.38.4.678
  33. Kim, S., K. Ji, H. Shin, S. Park, Y. Kho, K. Park, K. Kim and K. Cho. 2020. Occurrences of benzalkonium chloride n streams near a pharmaceutical manufacturing complex in Korea and associated ecological risk. Chemosphere 256: 127084.
  34. Kim, S., K.-J. Roh and D.-M. Kim. 2019. Behavior characteristics of nonylphenol in the downstream of river in Busan, Korea. Korean Journal of Fisheries and Aquatic Sciences 52(1): 74-80. https://doi.org/10.5657/KFAS.2019.0074
  35. Kim, Y.-H., H.-S. Kim, H.-G. Choi, H.-S. Cho and H.-B. Moon. 2012. Contamination and bioaccumulation of polybrominated diphenyl esthers (PBDEs) in Gwangyang Bay, Korea. Toxicology and Environmental Health Sciences 4(1): 42-49. https://doi.org/10.1007/s13530-012-0116-7
  36. Lee, I.S., U.J. Kim, J.E. Oh, M. Choi and D.W. Hwang. 2014. Comprehensive monitoring of synthetic musk compounds from freshwater to coastal environments in Korea: with consideration of ecological concerns and bioaccumulation. Science of The Total Environment 470-471: 1502-1508. https://doi.org/10.1016/j.scitotenv.2013.07.070
  37. Lee, S., H.-J. Cho, W. Choi and H.-B. Moon. 2018. Organophosphate flame retardants (OPFRs) in water and sediment: Occurrence, distribution, and hotspots of contamination of Lake Shihwa, Korea. Marine Pollution Bulletin 130: 105-112. https://doi.org/10.1016/j.marpolbul.2018.03.009
  38. Li, X. and B.J. Brownawell. 2010. Quaternary ammonium compounds in urban estuarine sediment environments - A class of contaminants in need of increased attention?. Environmental Science & Technology 44: 7561-7568. https://doi.org/10.1021/es1011669
  39. Li, J., Y. Wang, H.S. Xiong, Z.-J. Tan, Z. Lu, K.-K. Zheng, L.X. Zou, G.B. Luo, L. Ye, Z.H. Zhang and M. Wang. 2020. Investigation and optimization strategy on the operation of disinfection facilities in municipal WWTPs. China Water & Wastewater 36(8): 7-19 (in Chinese).
  40. Lu, Q., Y. Liang, W. Fang, K.L. Guan, C. Huang, X. Qi, Z. Liang, Y. Zeng, X. Luo, Z. He, B. Mai and S. Wang. 2021. Spatial Distribution, Bioconversion and Ecological Risk of PCBs and PBDEs in the Surface Sediment of Contaminated Urban Rivers: A Nationwide Study in China. Environmental Science & Technology 55(14): 9579-9590. https://doi.org/10.1021/acs.est.1c01095
  41. Minagawa, M. and E. Wada. 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et cosmochimica acta 48(5): 1135-1140. https://doi.org/10.1016/0016-7037(84)90204-7
  42. Ministry of Environment (MOE). 2010. The Development of ecological risk/health assessment in aquatic systems using multiple fish bioindicators and fish stressor identification methodology. Risk assessment and management technology. Report(in Korean).
  43. Ministry of Environment(MOE). 2016. An announcement of the result on complete review for every consumer chemical products (https://www.me.go.kr).
  44. Ministry of Environment (MOE). 2021. Detailed instructions for the safe use of disinfectant products.
  45. Ministry of Land, Infrastructure and Transport (MOLIT). 2001. Development of close-to-nature river improvement techniques. Report (in Korean).
  46. Murphy, C.A., I. Arismendi, G.A. Taylor and S.L. Johnson. 2019. Evidence for lasting alterations to aquatic food webs with shor-duration reservoir draining. PLoS ONE 14(2): e0211870.
  47. Nabi, G., Y. Wang, Y. Hao, S. Khan, Y. Wu and D. Li. 2020. Massive use of disinfectants against COVID-19 poses potential risks to urban wildlife. Environmental Research 188: 109916.
  48. Nixon, W.B. 1998. Wildlife International Ltd. memorandum to Gerald R. Schoenig, toxicology consultant to Lonza Inc. Re: DDAC octanol/water partition coefficient test. August 14, 1998.
  49. Odum, E.P. 1975. Fundamentals of Ecology, New York. 1-574.
  50. Oh, H.-J., M.-Y. Jin, B. Choi, K.-H. Shin, G.-H. La, H.-W. Kim, M.-H. Jang, K.-L. Lee and K.-H. Chang. 2019. Analysis of food web structure of Nakdong river using quantitative food web parameters obtained from carbon and nitrogen stable isotope ratios. Korean Journal of Ecology and Environment 52(1): 56-64.
  51. Oost, R., A. Opperhuizen, K. Satumalay, H. Heida and N.P.E. Vermeulen. 1996. Biomonitoring aquatic pollution with feral eel (Anguilla anuilla) I. Bioaccumulation: biota-sediment ratios of PCBs, OCPs, PCDDs, and PCDFs. Aquatic Toxicology 35(1): 21-46. https://doi.org/10.1016/0166-445X(96)00002-1
  52. Park, Y.J., S.-J. Lee and K.G. An. 2019. Analysis of fish ecology and water quality for health assessments of Geum-River watershed. Korean Journal of Environment and Ecology 33: 187-201. https://doi.org/10.13047/KJEE.2019.33.2.187
  53. Phillips, D.L, R. Inger, S. Bearhop, A. Jackson, J. Moore, A. Parnell, B. Semmens and E. Ward. 2014. Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology 92(10): 823-835. https://doi.org/10.1139/cjz-2014-0127
  54. Savoca, D. and A. Pace. 2021. Bioaccumulation, biodistribution, toxicology and biomonitoring of organofluorine compounds in aquatic organisms. International Journal of Molecular Sciences 22(12): 6276.
  55. Scharnweber, K., M.L. Andersson, F. Chaguaceda and P. Eklov. 2021. Intraspecific differences in metabolic rates shape carbon stable isotope trophic discrimination factors of muscle tissue in the common teleost Eurasian perch (Perca fluviatilis). Ecology and Evolution 11: 9804-9814. https://doi.org/10.1002/ece3.7809
  56. Smith, A.J., T. McGowan, M.J. Devlin, M.S. Massoud, M. AlEnezi and A.-S. Al-Zaidan. 2015. Screening for contaminant hotspots in the marine environment of Kuwait using ecotoxicological and chemical screening techniques. Marine Pollution Bulletin 100: 681-688. https://doi.org/10.1016/j.marpolbul.2015.08.043
  57. Szenasy, E. 1998. Assessing the potential impact of the antisapstains DDAC and IPBC, chemicals of concern in the Fraser River. FRAP Report No. 1998-07. Environment Canada, Environmental Conservation Branch, Fraser River Action Plan, Vancouver.
  58. Tan, J., H. Kuang, C. Wang, J. Liu, Q. Pang, Q. Xie and R. Fan. 2021. Human exposure and health risk assessment of an increasingly used antibacterial alternative in personal care products: Chloroxylenol. Science of The Total Environment 786: 147524.
  59. The New Jersey Department of Environmental Protection and the New Jersey Department of Environmental Protection and the New Jersey Department of Health, 2021, A guide to Health Advisories for Eating Fish and Crabs Caught in New Jersey Waters (https://www.FishSmartEatSmartNJ.org).
  60. USDA. 1998. Stream Corridor Restoration: Principles, Practices, and Processes, Federal Interagency Stream Restoration Working Group, USA.
  61. USEPA. 1998. A Comparative Analysis of Ecological Risks from Pesticides and Thier uses: Background, Methodology & Case Study, Environmental Fate & Effects Division, Office of Pesticide Programs, US EPA, Washington D.C., USA.
  62. USEPA. 2000. Guidance for assessing chemical contaminant data for use in fish advisories, US EPA, Washington D.C., USA.
  63. USGS. 2004. Biomonitoring of environmental status and trends (BEST) program: Environmental contaminants and their effects on fish in the Rio Grande Basin. USGS Scientific Investigation Report 2004-5108.
  64. Vander Zanden, M. and J.B. Rasmussen. 1999. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80(4): 1395-1404. https://doi.org/10.1890/0012-9658(1999)080[1395:PCCANA]2.0.CO;2
  65. Wang, W., H.-S. Cho, K. Kim, K. Park and J.-E. Oh. 2021. Tissue-specific distribution and bioaccumulation of cyclic and linear siloxanes in South Korean crucian carp (Carassius Carassius). Environmental Pollution 288: 117789.
  66. Won, E.-J., B. Choi, S. Hong, J.S. Khim and K.-H. Shin. 2018. Importance of accurate trophic level determination by nitrogen isotope of amino acids for trophic magnification studies: A review. Environmental Pollution 238: 677-690. https://doi.org/10.1016/j.envpol.2018.03.045
  67. Won, E.-J., B. Choi, C.H. Lee, S. Hong, J.-H. Lee and K.-H. Shin. 2020. Variability of trophic magnification factors as an effect of estimated trophic position: Application of compound-specific nitrogen isotope analysis of amino acids. Environment International 135: 105361.
  68. Won, E.-J., E. Byeon, Y.H. Lee, H. Jeong, Y. Lee, M.-S. Kim, H.-W. Jo, J.-K. Moon, M. Wang, J.-S. Lee and K.-H. Shin. 2022. Molecular evidence for suppression of swimming behavior and reproduction in the estuarine rotifer Brachionus koreanus in response to COVID-19 disinfectants. Marine Pollution Bulletin 175: 113396.
  69. Yang, Y.H., S.Y. Kwon, M.T.K. Tsui, L.C. Motta, S.J. Washburn, J. Park, M.-S. Kim and K.-H. Shin. 2022. Ecological traits of fish for mercury biomonitoring: Insights from compound-specific nitrogen and stable mercury isotopes. Environmental Science & Technology 56(15): 10808-10817. https://doi.org/10.1021/acs.est.2c02532
  70. Zhang, H., W. Tang, Y. Chen and W. Yin. 2020. Disinfection threatens aquatic ecosystems. Science 368(6487): 146-147. https://doi.org/10.1126/science.abb8905
  71. Zhang, Z., Y. Zhou, L. Han, X. Guo, Z. Wu, J. Fang, B. Hou, Y. Cai, J. Jiang and Z. Yang. 2022. Impacts of COVID-19 pandemic on the aquatic environment associated with disinfection byproducts and pharmaceuticals. Science of The Total Environment 811: 151409.
  72. Zheng, G., G.M. Filippelli and A. Salamova. 2020. Increased indoor exposure to commonly used disinfectants during the COVID-19 pandemic. Environmental Science & Technology Letters 7: 760-765. https://doi.org/10.1021/acs.estlett.0c00587