DOI QR코드

DOI QR Code

Food Web Models in Aquatic Ecosystems: Review

수생태계 먹이망 모델 고찰

  • 박영석 (경희대학교 생물학과) ;
  • 구경아 (한국환경연구원 자연환경연구실)
  • Received : 2022.12.13
  • Accepted : 2022.12.21
  • Published : 2022.12.31

Abstract

Interactions between species in a community are very complex, and they are visualized and analyzed through a food web in simple way. Food web is a network of species connected by trophic links showing energy flow from prey to predator. Various models were developed to characterize the food web in ecosystems. In this study, we classified food web models to static models such as Ecopath and dynamic models such as AQUATOX. We presented characteristics of several different types of food web models in each category, and reviewed their applications used in aquatic ecosystems. Finally, we presented issues to be considered to develop food web models.

먹이망은 군집의 종구성과 종간 관계를 나타내줄 뿐만 아니라 먹이망을 구성하는 요소를 정량화하여 구조를 분석하고 이해하는 데 유용하다. 먹이망에 관한 연구는 군집의 영양 패턴, 피식자와 포식자 사이의 개체군 동태, 생태계 안정성, 생태계 내 물질/에너지 흐름 등의 이해에 도움을 준다. 먹이망 모델은 생태계 군집의 종간 관계 복잡성을 이상적으로 표현해 주며 자연 생태계에서 관찰된 유형에 대한 정보를 제공해주므로, 먹이망 모델은 대상 군집의 특성과 동태를 연구하는 도구로 사용될 수 있다. 본 연구에서는 국내외에서 사용되는 주요 먹이망 모델을 정적 모델과 동적 모델의 유형으로 구분하여 주요 모델의 특성과 적용 사례를 고찰하였다. 정적 모델로 Ecopath 모델이 많이 사용되고 있고 이는 동적 모델인 Ecosim과 연계되어 Ecopath with Ecosim으로 통합되어 사용되고 있다. 또한 동적 모델로 독성물질 특성 등의 영향을 분석하고자 하는 경우 AQUATOX 모델이 많이 사용되고 있다. 효율적인 먹이망 모델을 구축하기 위해서는 대상 생태계의 생물 요소들 사이의 섭식선호성 관계가 충분히 파악되어야 하고 또한 주요 환경인자들이 이들 생물에 미치는 영향에 대한 기초자료 수집이 필요하다. 효율적인 생태계 관리를 위해서는 환경변수만을 고려하는 관리가 아닌 환경과 생물 특성과 관계, 그리고 먹이망을 같이 고려하는 생태계 수준의 연구가 요구된다.

Keywords

Acknowledgement

이 논문은 2022년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 "해양 기후변화에 대한 동해 심해생태계 반응 연구 (20220533)"와 한국환경연구원에서 수행 중인 "생물다양성 보전을 통한 생태계 탄소흡수원 확대 방안(GP2022-16)" 연구, 환경부의 재원으로 한국환경산업기술원 수생태계 건강성 확보 기술개발사업(과제번호: 2020003050003), 한국연구재단의 지원 (NRF-2019R1A2C1087099)을 받아 수행 되었음.

References

  1. Akkoyunlu, A. and Y. Karaaslan. 2015. Assessment of improvement scenario for water quality in Mogan Lake by using the AQUATOX Model. Environmental Science and Pollution Research 22: 14349-14357, https://doi.org/10.1007/s11356-015-5027-0
  2. Alcantara, J.M. and P.J. Rey. 2012. Linking topological structure and dynamics in ecological networks. The American Naturalist 180: 186-199, https://doi.org/10.1086/666651.
  3. Belgrano, A., J.A. Dunne and J. Bascompte. 2009. Food Webs, p. 596-603. In: Encyclopedia of Ocean Sciences(Steele, J.H., ed.). Academic Press, Oxford, https://doi.org/10.1016/B978-012374473-9.00780-3
  4. Bhele, U., B. Oglu, T. Feldmann, P. Bernotas, H. Agasild, P. Zingel, P. Noges, T. Noges and F. Cremona. 2022. Modelling how bottom-up and top-down processes control the major functional groups of biota in a large temperate shallow lake. Inland Waters 12: 368-382, https://doi.org/10.1080/20442041.2022.2031813
  5. Brett, M.T. and C.R. Goldman. 1996. A meta-analysis of the freshwater trophic cascade. Proceedings of the National Academy of Sciences 93(15): 7723-7726, https://doi.org/10.1073/pnas.93.15.7723
  6. Buzhdygan, O.Y., B.C. Patten, C. Kazanci, Q. Ma and S.S. Rudenko. 2012. Dynamical and system-wide properties of linear flow-quantified food webs. Ecological Modelling 245: 176-184. https://doi.org/10.1016/j.ecolmodel.2012.02.024
  7. Buzhdygan, O.Y., S.S. Rudenko, C. Kazanci and B.C. Patten. 2016. Effect of invasive black locust (Robinia pseudoacacia L.) on nitrogen cycle in floodplain ecosystem. Ecological Modelling 319: 170-177. https://doi.org/10.1016/j.ecolmodel.2015.07.025
  8. Campfens, J. and D. Mackay. 1997. Fugacity-based model of PCB bioaccumulation in complex aquatic food webs. Environmental Science & Technology 31: 577-583, https://doi.org/10.1021/es960478w
  9. Chea, R., C. Guo, G. Grenouillet and S. Lek, S. 2016. Toward an ecological understanding of a flood-pulse system lake in a tropical ecosystem: Food web structure and ecosystem health. Ecological Modelling 323: 1-11. https://doi.org/10.1016/j.ecolmodel.2015.11.014
  10. Chiu, G.S. 2013. Food web modeling. In: Encyclopedia of Environmetrics(El-Shaarawi, A.-H. and W. Piegorsch, eds.). John Wiley & Sons Ltd: Chichester, UK, https://doi.org/10.1002/9780470057339.vnn156
  11. Cho, M. 2016. Prediction of Foodweb Dynamics in Reservoir Aquatic Ecosystem Using AQUATOX. Ph.D. Thesis, Konkuk University, Seoul.
  12. Christensen, V. 2009. Chapter 5. Ecopath with Ecosim: linking fisheries and ecology. p. 55-70 In: WIT Transactions on State of the Art in Science and Engineering, Vol 34. WIT Press, https://doi.org/10.2495/978-1-84564-207-5/05
  13. Christensen, V., C.J. Walters and D. Pauly. 2005. Ecopath with Ecosim: a User's Guide. Fisheries Centre, University of British Columbia, Vancouver. November 2005 edition, 154p (available online at www.ecopath.org)
  14. Christensen, V. and D. Pauly. 1992. ECOPATH II - a software for balancing steady-state ecosystem models and calculating network characteristics. Ecological Modelling 61: 169-185. https://doi.org/10.1016/0304-3800(92)90016-8
  15. Christensen, V. and C.J. Walters. 2004. Ecopath with Ecosim: methods, capabilities and limitations. Ecological Modelling 172: 109-139. https://doi.org/10.1016/j.ecolmodel.2003.09.003
  16. Coll, M., I. Palomera, S. Tudela and F. Sarda. 2006. Trophic flows, ecosystem structure and fishing impacts in the South Catalan Sea, Northwestern Mediterranean. Journal of Marine Systems 59: 63-96. https://doi.org/10.1016/j.jmarsys.2005.09.001
  17. Dodson, S.I., S.E. Arnott and K.L. Cottingham. 2000. The Relationship in lake communities between primary productivity and species richness. Ecology 81: 2662-2679. https://doi.org/10.1890/0012-9658(2000)081[2662:TRILCB]2.0.CO;2
  18. Downing, A.S., E.H. van Nes, J.H. Janse, F. Witte, I.J.M. Cornelissen, M. Scheffer and W.M. Mooij. 2012. Collapse and reorganization of a food web of Mwanza Gulf, Lake Victoria. Ecological Applications 22: 229-239. https://doi.org/10.1890/11-0941.1
  19. Fulton, E.A., A.D.M. Smith, D.C. Smith and P. Johnson. 2014. An integrated approach is needed for ecosystem based fisheries management: Insights from ecosystem-level management strategy evaluation. PLoS One 9: e84242.
  20. Fulton, E.A., A.D.M. Smith and C.R. Johnson. 2003. Effect of complexity on marine ecosystem models. Marine Ecology Progress Series 253: 1-16. https://doi.org/10.3354/meps253001
  21. Gotelli, N.J. and A.M. Ellison. 2006. Food-web models predict species abundances in response to habitat change. PLOS Biology 4, e324.
  22. Gredelj, A., A. Barausse, L. Grechi and L. Palmeri. 2018. Deriving predicted no-effect concentrations (PNECs) for emerging contaminants in the river Po, Italy, using three approaches: Assessment factor, species sensitivity distribution and AQUATOX ecosystem modelling. Environment International 119: 66-78. https://doi.org/10.1016/j.envint.2018.06.017
  23. Guo, C.B., S.W. Ye, S. Lek, J.S. Liu, T.L. Zhang, J. Yuan, Z.J. Li. 2013. The need for improved fishery management in a shallow macrophytic lake in the Yangtze River basin: Evidence from the food web structure and ecosystem analysis. Ecological Modelling 267: 138-147. https://doi.org/10.1016/j.ecolmodel.2013.07.013
  24. Heath, M.R., D.C. Speirs, I. Thurlbeck and R.J. Wilson. 2021. Strath-E2E2: An r package for modelling the dynamics of marine food webs and fisheries. Methods in Ecology and Evolution 12: 280-287. https://doi.org/10.1111/2041-210X.13510
  25. Hoang, T., D. Nguyen, J. Lee, K. Han and T. Lee. 2021. Development of Nakdong river estuary ecosystem model using AQUATOX model. Journal of Korean Society of Environmental Engineers 43: 51-65. https://doi.org/10.4491/KSEE.2021.43.1.51
  26. Hu, F., K. Bolding, J. Bruggeman, E. Jeppesen, M.R. Flindt, L. van Gerven, J.H. Janse, A.B.G. Janssen, J.J. Kuiper, W.M. Mooij and D. Tolle. 2016. FABM-PCLake - linking aquatic ecology with hydrodynamics. Geoscientific Model Development 9: 2271-2278. https://doi.org/10.5194/gmd-9-2271-2016
  27. Jang, S.-H. and J.-H. Lee. 2011. Comparison of trophic structures and energy flows using the Ecopath model in the Lake Namyang and the lower reaches of the Nakdong river. Korean Journal of Environment and Ecology 25: 747-759.
  28. Jang, S.H., C.I. Zhang, J.H. Na, S.W. Kim, K.G. An, J.J. Lee and J.H. Lee. 2008. A analysis of trophic structure in Lake Namyang using the Ecopath modelling. Korean Journal Limnology 41: 144-154.
  29. Janse, J.H. 1998. A model of ditch vegetation in relation to eutrophication. Water Science and Technology 37: 139-149. https://doi.org/10.2166/wst.1998.0194
  30. Janse, J.H., L.N. De Senerpont Domis, M. Scheffer, L. Lijklema, L. Van Liere, M. Klinge and W.M. Mooij. 2008. Critical phosphorus loading of different types of shallow lakes and the consequences for management estimated with the ecosystem model PCLake. Limnologica 38: 203-219. https://doi.org/10.1016/j.limno.2008.06.001
  31. Janssen, A.B.G., V.C.L. de Jager, J.H. Janse, X. Kong, S. Liu, Q. Ye and W.M. Mooij. 2017. Spatial identification of critical nutrient loads of large shallow lakes: Implications for Lake Taihu (China). Water Research 119: 276-287. https://doi.org/10.1016/j.watres.2017.04.045
  32. Janssen, A.B.G., S. Teurlincx, A.H.W. Beusen, M.A.J. Huijbregts, J. Rost, A.M. Schipper, L.M.S. Seelen, W.M. Mooij and J.H. Janse. 2019. PCLake+: A process-based ecological model to assess the trophic state of stratified and non-stratified freshwater lakes worldwide. Ecological Modelling 396: 23-32. https://doi.org/10.1016/j.ecolmodel.2019.01.006
  33. Ji, C.W., D.-S. Lee, D.-Y., Lee, I.-S. Kwak and Y.-S. Park. 2020. Analysis of food resources of 45 fish species in freshwater ecosystems of South Korea (based on literature data analysis). Korean Journal of Ecology and Environment 53: 311-323. https://doi.org/10.11614/KSL.2020.53.4.311
  34. Kaplan, I.C., P.S. Levin, M. Burden and E.A. Fulton. 2010. Fishing catch shares in the face of global change: A framework for integrating cumulative impacts and single species management. Canadian Journal Fisheries and Aquatic Sciences 67: 1968-1982. https://doi.org/10.1139/F10-118
  35. Kazanci, C. 2007. EcoNet: A new software for ecological modeling, simulation and network analysis. Ecological Modelling 208: 3-8. https://doi.org/10.1016/j.ecolmodel.2007.04.031
  36. Kim, H.C., J.K. Lee, M.H. Kim, B.-M. Choi, I.-S. Seo and J.H. Na. 2018. Analysis of trophic structure and energy flows in the Uljin marine ranching area, Korean East Sea. Journal of the Korean Society of Marine Environment and Safety 24: 750-763. https://doi.org/10.7837/kosomes.2018.24.6.750
  37. Kong, X., Q. He, B. Yang, W. He, F. Xu, A.B.G. Janssen, J.J. Kuiper, L.P.A. van Gerven, N. Qin, Y. Jiang, W. Liu, C. Yang, Z. Bai, M. Zhang, F. Kong, J.H. Janse, W.M. Mooij. 2017. Hydrological regulation drives regime shifts: evidence from paleolimnology and ecosystem modeling of a large shallow Chinese lake. Global Change Biology 23: 737-754. https://doi.org/10.1111/gcb.13416
  38. Kong, X.Z., F.L. Xu, W. He, W.X. Liu and B. Yang. 2016. Chapter 4 - Steady State Models. p. 65-89. In: Ecological Model Types(Jorgensen, S.E. ed.). Elsevier, Amsterdam.
  39. Kwak, I.-S., Y.-S. Park and K.-H. Chang. 2021. Application and utilization of environmental DNA technology for biodiversity in water ecosystems. Korean Journal of Ecology and Environment 54: 151-155. https://doi.org/10.11614/KSL.2021.54.3.151
  40. Lee, M.W. 2014. Ecosystem-base Stock Assessment and Fisheries Management in the West Coast of Korea. Doctoral Dissertation, Pukyong National University, Busan.
  41. Lee, S.I. and C.I. Zhang. 2018. Evaluation of the effect of marine ranching activities on the Tongyeong marine ecosystem. Ocean Science Journal 53: 557-582. https://doi.org/10.1007/s12601-018-0045-8
  42. Lee, T., T. Hoang, D. Nguyen and K. Han. 2021. Simulating the gross primary production and ecosystem respiration of estuarine ecosystem in Nakdong estuary with AQUATOX. Journal of the Korean Geo-Environmental Society 22: 15-29.
  43. Lei, B., S. Huang, M. Qiao, T. Li and Z. Wang. 2008. Prediction of the environmental fate and aquatic ecological impact of nitrobenzene in the Songhua River using the modified AQUATOX model. Journal of Environmental Sciences (China) 20: 769-777. https://doi.org/10.1016/S1001-0742(08)62125-7
  44. Li, X., A.B.G. Janssen, J.J.M. de Klein, C. Kroeze, M. Strokal, L. Ma and Y. Zheng. 2019. Modeling nutrients in Lake Dianchi (China) and its watershed. Agricultural Water Management 212: 48-59.
  45. Link, J.S., E.A. Fulton and R.J. Gamble. 2010. The Northeast US application of ATLANTIS: An full system model exploring marine ecosystem dynamics in a living marine resource management context. Progress in Oceanography 87: 214-234. https://doi.org/10.1016/j.pocean.2010.09.020
  46. Lombardo, A., A. Franco, A. Pivato and A. Barausse. 2015. Food web modeling of a river ecosystem for risk assessment of down-the-drain chemicals: A case study with AQUATOX. Science of The Total Environment 508: 214-227. https://doi.org/10.1016/j.scitotenv.2014.11.038
  47. Lucey, S.M., S.K. Gaichas and K.Y. Aydin. 2020. Conducting reproducible ecosystem modeling using the open source mass balance model Rpath. Ecological Modelling 427: 109057.
  48. Matson, P.A. and M.D. Hunter. 1992, Special feature: The relative contributions to top-down and bottom-up forces in population and community ecology. Ecology 73: 723-723. https://doi.org/10.2307/1940151
  49. Meng, J.-N., H. Fang, L. Huang, G. He, X. Liu, C. Xu, X. Wu and D. Scavia. 2022. Multidimensional ecosystem assessment of Poyang Lake under anthropogenic influences. Ecological Modelling 473: 110134.
  50. NIER (National Institute of Environment Research) 2018. Studies on the Availability of Foodweb Model to Predict Stream Aquatic Ecosystem Changes. National Institute of Environment Research, Incheon.
  51. Oh, H.J., Y.-J. Chae, Y. Choi, D. Ku, Y.-J. Heo, I.-S. Kwak, H. Jo, Y.-S. Park, K.-H. Chang and H.-W. Kim. 2021. Review and suggestions for applying DNA sequencing to zooplankton researches: from taxonomic approaches to biological interaction analysis. Korean Journal of Ecology and Environment 54: 156-169. https://doi.org/10.11614/KSL.2021.54.3.156
  52. Ortega-Cisneros, K., K. Cochrane and E.A. Fulton. 2017. An Atlantis model of the southern Benguela upwelling system: Validation, sensitivity analysis and insights into ecosystem functioning. Ecological Modelling 355: 49-63. https://doi.org/10.1016/j.ecolmodel.2017.04.009
  53. Ortega-Cisneros, K., E. Weigum, R. Chalmers, S. Grusd, A.T. Lombard and L. Shannon. 2022. Supporting marine spatial planning with an ecosystem model of Algoa Bay, South Africa. African Journal of Marine Science 44:189-204. https://doi.org/10.2989/1814232X.2022.2080268
  54. Park, R.A. and J.S. Clough. 2014. AQUATOX (RELEASE 3.1 Plus) Modeling Environmental Fate and Ecological Effects in Aquatic Ecosystems, Vol. 2, EPA. Technical Documentation.
  55. Paves, H.J. and H.E. Gonzalez. 2008. Carbon fluxes within the pelagic food web in the coastal area off Antofagasta (23 S), Chile: The significance of the microbial versus classical food webs. Ecological Modelling 212: 218-232. https://doi.org/10.1016/j.ecolmodel.2007.10.004
  56. Polis, G.A. and D.R. Strong. 1996. Food web complexity and community dynamics. The American Naturalist 147: 813-846. https://doi.org/10.1086/285880
  57. Polovina, J.J. 1984. Model of coral reef ecosystem. I. The Eopath model and its application to French Frigate Shoals. Coral Reefs 3: 1-11. https://doi.org/10.1007/BF00306135
  58. Rashleigh, B. 2003. Application of AQUATOX, a Process-Based Model for Ecological Assessment, to Contentnea Creek in North Carolina. Journal of Freshwater Ecology 18: 515-522, https://doi.org/10.1080/02705060.2003.9663992
  59. Rashleigh, B., M.C. Barber and D.M. Walters. 2009. Foodweb modeling for polychlorinated biphenyls (PCBs) in the Twelvemile Creek Arm of Lake Hartwell, South Carolina, USA. Ecological Modelling 220: 254-264. https://doi.org/10.1016/j.ecolmodel.2008.09.007
  60. Rehren, J., M. Coll, N. Jiddawi, L.C. Kluger, O. Omar, V. Christensen, M.G. Pennino and M. Wolff. 2022. Evaluating ecosystem impacts of gear regulations in a data-limited fishery-comparing approaches to estimate predator-prey interactions in Ecopath with Ecosim. Ices Journal of Marine Science 79: 1624-1636. https://doi.org/10.1093/icesjms/fsac077
  61. Rhee, H.-P. 2012. Ecological Impact Assessment Using AQUATOX Model in Paldang Reservoir. Ph.D. Thesis, Konkuk University, Seoul.
  62. Salvadori, L., D. Moccia, L. Melis, G. Folegnani, A. Pusceddu, A. Carucci and S. Ferrari. 2022. Using the AQUATOX model to forecast water bodies quality status response to environmental perturbations. EPJ Web Conf. 269, 01051.
  63. Schnedler-Meyer, N.A., T.K. Andersen, F.R.S. Hu, K. Bolding, A. Nielsen and D. Trolle. 2022. Water ecosystems tool (WET) 1.0 - A new generation of flexible aquatic ecosystem model. Geoscientific Model Development 15: 3861-3878. https://doi.org/10.5194/gmd-15-3861-2022
  64. Smith, T.M. and R.L. Smith. 2021. Elements of Ecology. Pearson, Boston.
  65. Stewart, T.J. and W.G. Sprules. 2011. Carbon-based balanced trophic structure and flows in the offshore Lake Ontario food web before (1987-1991) and after (2001-2005) invasion-induced ecosystem change. Ecological Modelling 222: 692-708. https://doi.org/10.1016/j.ecolmodel.2010.10.024
  66. Szalaj, D., A. Silva, P. Re and H. Cabral. 2022. Predictions of sardine and the Portuguese continental shelf ecosystem dynamics under future fishing, forced-biomass and SST scenarios. Marine Pollution Bulletin 178: https://doi.org/10.1016/j.marpolbul.2022.113594
  67. Testa, G., S. Neira, R. Giesecke and A. Pinones. 2022. Projecting environmental and krill fishery impacts on the Antarctic Peninsula food web in 2100. Progress in Oceanography 206, https://doi.org/10.1016/j.pocean.2022.102862
  68. Thapanand, T., J. Moreau, T. Jutagate, P. Wongrat, T. Lekchon-layut, C. Meksumpun, S. Janekitkarn, A. Rodloi, V. Dulyapruk and L. Wongrat. 2007. Towards possible fishery management strategies in a newly impounded manmade lake in Thailand. Ecological Modelling 204: 143-155. https://doi.org/10.1016/j.ecolmodel.2006.12.041
  69. Villanueva, M.C., P. Laleye, J.J. Albaret, R. Lae, L.T. de Morais and J. Moreau. 2006. Comparative analysis of trophic structure and interactions of two tropical lagoons. Ecological Modelling 197: 461-477. https://doi.org/10.1016/j.ecolmodel.2006.03.016
  70. Woo, S., Y. Kim, W. Kim, S. Kim and S. Kim. 2021. Development of water quality and aquatic ecosystem model for Andong lake using SWAT-WET. Journal of Korea Water Resources Association 54(9): 719-730.
  71. Yang, Y. and H. Chen. 2013. Assessing impacts of flow regulation on trophic interactions in a wetland ecosystem. Journal of Environmental Informatics 21: 63-71. https://doi.org/10.3808/jei.201300233
  72. Yeom, J., I. Kim, M. Kim, K. Cho and S.D. Kim. 2020. Coupling of the AQUATOX and EFDC models for ecological impact assessment of chemical spill scenarios in the Jeonju river, Korea. Biology 9: 340.
  73. Yoon, C., H.-P. Rhee and Y. Son. 2017. Applicability study of ecological impact assessment using AQUATOX model in Paldang Reservoir, South Korea. Desalination and Water Treatment 60: 39-47. https://doi.org/10.5004/dwt.2017.0091
  74. Zeng, Y., W. Yang and Y. Zhao. 2022. Ecological impact of polycyclic aromatic hydrocarbons on Baiyangdian Lake based on an ecosystem model. Ecological Modelling 472:110103.
  75. Zhang, C.I. and S.C. Yoon. 2003, Effects of climatic regime shift on the structure of marine ecosystem in the Southwestern East Sea during the 1970s. Korean Journal of Fisheries and Aquatic Sciences 36: 389-401. https://doi.org/10.5657/kfas.2003.36.4.389
  76. Zhang, C.-I., Y.-I. Seo and H.-J. Kang. 2017. Estimation of the exploitable carrying capacity in the Korean Water of the East China Sea. Journal of Fisheries and Marine Sciences Education 29(2): 513-525. https://doi.org/10.13000/JFMSE.2017.29.2.513
  77. Zhang, C.I., Y.I. Seo, H.J. Kang and J.H. Lim. 2019. Exploitable carrying capacity and potential biomass yield of sectors in the East China Sea, Yellow Sea, and East Sea/Sea of Japan large marine ecosystems. Deep-Sea Research Part II: Topical Studies in Oceanography 163: 16-28.  https://doi.org/10.1016/j.dsr2.2018.11.016