DOI QR코드

DOI QR Code

수질 특성에 따른 우리나라 주요 호소 분류 및 호소 영양 상태 변동 특성 분석

Classification of Major Reservoirs Based on Water Quality and Changes in Their Trophic Status in South Korea

  • 투고 : 2022.05.11
  • 심사 : 2022.06.24
  • 발행 : 2022.06.30

초록

호소의 수질 특성을 이해하는 것은 호소 및 정수생태계 관리의 가장 기본 요소이다. 호소의 수질은 호소의 수리수문학적 요소, 주변 토지 이용/피복, 유역 내 인간 활동을 포함한 다양한 요인에 의해 영향을 받는다. 본 연구에서는 호소에서 5년 동안(2015~2019) 측정된 9가지 이화학적 요인(pH, DO, COD, TSS, T-N, T-P, TOC, EC, Chl-a)을 이용하여, 국내 83개 주요 호소를 수질에 따라 분류하였다. 계층적 그룹 분석을 통해 전체 호소는 총 5개의 유형으로 분류되었고, 각 유형별로 저수지의 수질 및 고도, 유역면적, 만수위, 총 저수량과 같은 수리수문학적 요인을 반영하였다. 특히 저고도에 위치한 대형 호소에서(그룹 I) 수질이 매우 낮게 나타났다. 한국형 부영양화 지수를 이용하여 국내 주요 호소의 부영양화 정도를 비교한 결과, 석호가 포함된 그룹 IV 및 신갈지 등에서는 과거 2004~2008년에 비해 부영양화 지수가 개선되었으나, 그룹 I, III, V에 속한 대부분의 농업용 저수지에서는 부영양화가 심화되었다.

Understanding the characteristics of reservoir water quality is fundamental in reservoir ecosystem management. The water quality of reservoirs is affected by various factors including hydro-morphology of reservoirs, land use/cover, and human activities in their catchments. In this study, we classified 83 major reservoirs in South Korea based on nine physicochemical factors (pH, dissolved oxygen, chemical oxygen demand, total suspended solid, total nitrogen, total phosphorus, total organic carbon, electric conductivity, and chlorophyll-a) measured for five years (2015~2019). Study reservoirs were classified into five main clusters through hierarchical cluster analysis. Each cluster reflected differences in the water quality of reservoirs as well as hydromorphological variables such as elevation, catchment area, full water level, and full storage. In particular, water quality condition was low at a low elevation with large reservoirs representing cluster I. In the comparison of eutrophication status in major reservoirs in South Korea using the Korean trophic state index, in some reservoirs including cluster IV composed of lagoons, the eutrophication was improved compared to 2004~2008. However, eutrophication status has been more impaired in most agricultural reservoirs in clusters I, III, and V than past. Therefore, more attention is needed to improve the water quality of these reservoirs.

키워드

과제정보

본 연구는 환경부의 재원으로 한국환경산업기술원 '수생태계 건강성 확보 기술개발사업 (과제번호: 2020003050003)'의 지원을 받아 수행하였습니다.

참고문헌

  1. Brezonik, P.L. 1984. Trophic state indices: rationale for multivariate approaches. Lake and Reservoir Management 1: 441-445. https://doi.org/10.1080/07438148409354553
  2. Carlson, R.E. 1977. A trophic state index for lakes. Limnology and Oceanography 22: 361-369. https://doi.org/10.4319/lo.1977.22.2.0361
  3. Cho, J.-L., S.-J. Hwang, K.-J. Cho and J.-K. Shin. 2000. Eutrophication and water pollution characteristics of the Kyongan Stream to Paltang Reservoir. Korean Journal of Ecology and Environment 33: 387-394.
  4. Cunha, D.G.F., M. do Carmo Calijuri and M.C. Lamparelli. 2013. A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecological Engineering 60: 126-134. https://doi.org/10.1016/j.ecoleng.2013.07.058
  5. Dinno, A. 2017. dunn. test: Dunn's test of multiple comparisons using rank sums. Page 1 R package version.
  6. Gikas, G.D., V.A. Tsihrintzis, C.S. Akratos and G. Haralambidis. 2009. Water quality trends in Polyphytos reservoir, Aliakmon river, Greece. Environmental Monitoring and Assessment 149: 163-181. https://doi.org/10.1007/s10661-008-0191-z
  7. Heo, W.-M., B.-C. Kim and M.-S. Jun. 1999. Evaluation of eutrophication of lagoons in the eastern coast of Korea. Korean Journal of Limnology 32: 141-151.
  8. Hwang, S.-J., S.-K. Kwun and C.-G. Yoon. 2003. Water quality and limnology of Korean reservoirs. Paddy and Water Environment 1: 43-52. https://doi.org/10.1007/s10333-003-0010-7
  9. Jang, J.-R. 2010. Agricultural water quality improvement measures and current status. Magazine of the Korean Society of Agricultural Engineers 52: 23-31.
  10. Jeon, J.-H., J.-H. Ham, H.-I. Kim, S.-J. Hwang and C.-G. Yoon. 2002. Effects of physical parameters on water quality in agricultural reservoirs. Korean Journal of Ecology and Environment 35: 28-35.
  11. Jeong, Y.S., D.-S. Lee, D.-Y. Lee, I.-S. Kwak and Y.-S. Park. 2022. Characterization of heavy metal pollution in sediments of major reservoirs in South Korea. Korean Journal of Ecology and Environment 55(2): 175-183. https://doi.org/10.11614/KSL.2022.55.2.175
  12. Kim, B., J.-H. Park, G. Hwang, M.-S. Jun and K. Choi. 2001. Eutrophication of reservoirs in South Korea. Limnology 2: 223-229. https://doi.org/10.1007/s10201-001-8040-6
  13. Kim, H.-S. and S.-J. Hwang. 2004. Analysis of eutrophication based on chlorophyll-a, depth and limnological characteristics in Korean reservoirs. Korean Journal of Ecology and Environment 37: 213-226.
  14. Kim, H.-S., E.-M. Choi, D.-W. Kim, D.-S. Kong, K.-M. Kim and B.-C. Kim. 2007. Water quality trend analysis based on watershed characteristics in agriculture reservoirs. Korean Journal of Ecology and Environment 40: 214-222.
  15. Kim, H.-S., E.-M. Choi, J.-h. Park, H.-S. Hwang, B. Kim, D.-S. Kong and S.-J. Hwang. 2008. The relationships between empirical factors and water quality in agricultural reservoirs. Journal of Korean Society on Water Environment 24: 333-339.
  16. Kong, D. and B. Kim. 2019. Suggestion for trophic state index of Korean lakes (upper layer). Journal of Korean Society on Water Environment 35: 340-351.
  17. Kwak, Y.-H., S.-Y. Kim, H.-Y. Song, H.-J. Jeon and M.-Y. Song. 2021. Characteristics of fish communities in Namyang lake and its tributaries in the estuary of Han river watershed, South Korea. Korean Journal of Ecology and Environment 54: 1-11. https://doi.org/10.11614/KSL.2021.54.1.001
  18. Kwon, Y.-S., M.-J. Bae, J.-S. Kim, Y.-J. Kim, B.-H. Kim and Y.-S. Park. 2014. Characterizing changes of water quality and relationships with environmental factors in the selected Korean reservoirs. Korean Journal of Ecology and Environment 47: 146-159. https://doi.org/10.11614/KSL.2014.47.3.146
  19. Lee, J.-W., S.-W. Lee, S.-J. Hwang, M.-H. Jang, D.-H. Won, K.-J. An, H.-J. Park and J. Lee. 2020. Establishing diagnosis systems for impaired stream ecosystem using stream/river ecosystem survey and health Assessment. Korean Journal of Ecology and Environment 53: 1-10. https://doi.org/10.11614/KSL.2020.53.1.001
  20. Liu, W., Q. Zhang and G. Liu. 2010. Lake eutrophication associated with geographic location, lake morphology and climate in China. Hydrobiologia 644: 289-299. https://doi.org/10.1007/s10750-010-0151-9
  21. MAF (Ministry of Agriculture and Forestry). 2005. Development of management strategies and techniques to control nuisant algal blooms in Korean agricultural reservoirs. Ministry of Agriculture and Forestry.
  22. MOE. 1994. The lakes handbook. Ministry of Environment, Kwacheon.
  23. MOE. 2009. Study on water quality management for reservoir. Ministry of Environment, Kwacheon.
  24. MOE. 2017. Guidance of environmental survey for lake/reservoir. Ministry of Environment, Kwacheon.
  25. NIER. 2006. A study on the comprehensive assessment methods of water environment (III): Study of eutrophication survey and assessment system. National Institute of Environmental Research, Incheon.
  26. OECD. 1982. Eutrophication of waters : monitoring, assessment and control. Paris.
  27. Oksanen, J., F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R.B. O'Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, E. Szoecs and H. Wagner. 2020. Vegan: Community Ecology Package (R package version 2.5-7).
  28. Park, Y.-S., Y.-S. Kwon, S.-J. Hwang and S. Park. 2014. Characterizing effects of landscape and morphometric factors on water quality of reservoirs using a self-organizing map. Environmental Modelling & Software 55: 214-221. https://doi.org/10.1016/j.envsoft.2014.01.031
  29. R Core Team. 2021. R: A Language and environment for statistical computing. Foundation for Statistical Computing, Vienna, Austria.
  30. Withers, P.J., C. Neal, H.P. Jarvie and D.G. Doody. 2014. Agriculture and eutrophication: where do we go from here? Sustainability 6: 5853-5875. https://doi.org/10.3390/su6095853