DOI QR코드

DOI QR Code

Depth estimation for surface-breaking cracks in steel-fiber reinforced concrete using ultrasonic surface waves

  • Ahmet S. Kirlangic (Department of Engineering, Teesside University) ;
  • Zafer Iscan (Department of Electrical and Electronical Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University)
  • 투고 : 2022.10.25
  • 심사 : 2022.12.08
  • 발행 : 2022.12.25

초록

A USW based diagnostic procedure is presented for estimating the depth of surface-breaking cracks. The diagnosis is demonstrated on seven lab-scale SFRC beam specimens, which are subjected to the CMOD controlled three-point bending test to create real bending cracks. Then, the recorded multiple ultrasonic signals are examined with the signal processing techniques, including wavelet transform and two-dimensional Fourier transform, to investigate the relationships between the crack depth and two diagnostic indices, namely the attenuation coefficient and dispersion index (DI). Finally, the reliabilities of these indices for depth estimation are verified with the visually measured crack depths as well as the crack features obtained with a digital image processing algorithm. It is found that the DI outperforms the attenuation coefficient in depth estimation, where this index displays good agreement with the visual inspection for 86% of the inspected specimens.

키워드

과제정보

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) [Reintegration Grant, Project ID: 118C022]. Authors would like to thank Amine Hatun Yumusak and Merve Eksiler for their contribution in generating the DIP results.

참고문헌

  1. Acebes, M., Molero, M., Segura, I., Moragues, A. and Hernandez, M.G. (2011), "Study of the influence of microstructural parameters on the ultrasonic velocity in steel-fiber-reinforced cementitious materials", Constr. Build. Mater., 25(7), 3066-3072. https://doi.org/10.1016/j.conbuildmat.2010.12.062.
  2. ACI Committee 222R-01 (2010), Protection of metals in concrete against corrosion, American Concrete Institute, Farmington Hills, MI.
  3. Addison, P. (2002), The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Institute of Physics Publishing, Bristol and Philadelphia.
  4. Aggelis, D.G., Leonidou, E. and Matikas, T.E. (2012), "Subsurface crack determination by one-sided ultrasonic measurements", Cement Concrete Compos, 34(2), 140-146. https://doi.org/10.1016/j.cemconcomp.2011.09.017.
  5. ASTM C597-16 (2016), Standard Test Method for Pulse Velocity Through Concrete. ASTM International, West Conshohocken, PA.
  6. ASTM C1383-15 (2015), Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method. ASTM International, West Conshohocken, PA.
  7. Carpinteri, A., Lacidogna, G. and Niccolini, G. (2011), "Damage analysis of reinforced concrete buildings by the acoustic emission technique", Struct. Control Health Monit., 18(6), 660-673. https://doi.org/10.1002/stc.393.
  8. Daniels, D.J. (2004), Ground Penetrating Radar, Institution of Engineering and Technology.
  9. Dorafshan, S., Thomas, R.J. and Maguire, M. (2018), "Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete", Constr. Build. Mater., 186, 1031-1045. https://doi.org/10.1016/j.conbuildmat.2018.08.011.
  10. du Tertre, A., Kirlangic, A.S., Cascante, G. and Tighe, S.L. (2020), "Ultrasonic inspection of asphalt pavements to assess longitudinal joints", Road Materials and Pavement Design. https://doi.org/10.1080/14680629.2020.1820895.
  11. EN 14651. (2005), Test method for metallic fibre concrete - Measuring the flexural tensile strength.
  12. Graff, K.F. (1975), Wave Motion in Elastic Solids, Ohio State University Press, Belfast.
  13. Katzer, J., Kobaka, J. and Ponikiewski, T. (2020), "Influence of crimped steel fibre on properties of concrete based on an aggregate mix of waste and natural aggregates", Materials, 13(8). https://doi.org/10.3390/MA13081906.
  14. Kee, S., La, H., Basily, B. and Maher, A. (2015), "Delamination and concrete quality assessment of concrete bridge decks using a fully autonomous RABIT platform", Struct. Monit. Maint., 2(1), 19-34. https://doi.org/10.12989/smm.2015.2.1.019.
  15. Kirlangic, A.S., Cascante, C. and Polak, M. (2015), "Condition assessment of cementitious materials using surface waves in ultrasonic frequency range", ASTM Int. Geotech. Test. J., 38(2), 1-11.
  16. Kirlangic, A.S., Cascante, C. and Polak, M. (2016), "Assessment of concrete beams with irregular defects using surface waves", ACI Materials, 113(1), 73-81.
  17. Kirlangic, A.S., Cascante, G. and Salsali, H. (2020), "New diagnostic index based on surface waves: Feasibility study on concrete digester tank", J. Perform. Constr. Fac., 34(6). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001522.
  18. La Malfa Ribolla, E., Rezaee Hajidehi, M., Rizzo, P., Fileccia Scimemi, G., Spada, A. and Giambanco, G. (2018), "Ultrasonic inspection for the detection of debonding in CFRP-reinforced concrete", Struct. Infrastruct. Eng., 14(6). 807-816. https://doi.org/10.1080/15732479.2017.1384843.
  19. MATLAB. (2010), version 7.10.0 (R2010a), Natick, Massachusetts: The MathWorks Inc.
  20. Nasseri-Moghaddam A., Phillips C., Cascante G. and Hutchinson J. (2007), "Effects of underground cavities on Rayleigh waves-numerical and experimental study", Soil Dynam. Earthq. Eng., 27(4), 3000-3013.
  21. Richart, F.E. Jr., Hall, J.R. and Woods, R.D. (1970), Vibrations of Soil and Foundations, Prentice-Hall, Englewood Cliffs, New Jersey.
  22. Rodriguez-Roblero, M.J., Ayon, J.J., Cascante, G., Pandey, M.D., Alyousef, R. and Topper, T. (2019), "Application of correlation analysis techniques to surface wave testing for the evaluation of reinforced concrete structural elements", NDT & E Int., 102, 68-76. https://doi.org/10.1016/j.ndteint.2018.11.003.
  23. Song, W., Popovics, J.S., Aldrin, J.C. and Shah, S.P. (2003), "Measurement of surface wave transmission coefficient across surface-breaking cracks and notches in concrete", J. Acoust. Soc. Am., 113(2), 717-725. https://doi.org/10.1121/1.1537709.
  24. Tallavo, F., Cascante, G. and Mahesh, P. (2009), "Experimental and numerical analysis of MASW tests for detection of buried timber trestles", Soil Dynam. Earthq. Eng., 29(1), 91-102. https://doi.org/10.1016/j.soildyn.2008.01.011.
  25. Tang, S. and Chen, Z.Q. (2020), "Scale-Space data augmentation for deep transfer learning of crack damage from small sized datasets", J. Nondestruct. Eval., 39(3). https://doi.org/10.1007/s10921-020-00715-z.
  26. Van Hauwaert, A., Delannay, F. and Thimus, J. (1999), "Cracking behavior of steel fiber reinforced concrete revealed by means of acoustic emission and ultrasonic wave propagation", ACI Mater. J., 96(3), 291-296.
  27. Yang, Y., Cascante, G. and Polak, M. (2009), "Depth detection of surface-breaking cracks in concrete plates using fundamental lamb modes", NDT & E Int., 42(6), 501-512. https://doi.org/10.1016/j.ndteint.2009.02.009.
  28. Yazici, S., Inan, G. and Tabak, V. (2007), "Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC", Constr. Build. Mater., 21(6), 1250-1253. https://doi.org/10.1016/j.conbuildmat.2006.05.025.
  29. Zerwer, A., Polak, M. and Santamarina, J.C. (2003), "Rayleigh wave propagation for the detection of near surface discontinuities: Finite element study", J. Nondestruct. Eval., 22(2), 39-52. https://doi.org/10.1023/A:1026307909788.