References
- After Italy Collapse, Europe Asks: How Safe Are Our Bridges? (2018), https://www.nytimes.com/2018/08/21/world/europe/genoa-bridge-collapse.html, The New York Times (nytimes.com).
- Ahmad, R. and Kamaruddin, S. (2012), "An overview of time-based and condition-based maintenance in industrial application", Comput. Ind. Eng., 63(1), 135-149. https://doi.org/10.1016/j.cie.2012.02.002.
- American Society of Civil Engineering (2021), Bridge infrastructure report card.
- Bernardini, L., Benedetti, L., Somaschini, C., Cazzulani, G. and Belloli, M. (2021), "SHM campaign on 138 spans of railway viaducts by means of OMA and wireless sensors network", Proceedings of the 9 th International Conference on Experimental Vibration Analysis for Civil Engineering Structures, Tokyo, September. https://doi.org/10.1007/978-3-030-93236-7_3.
- Bridges across Europe are in a dangerous state, warn experts (2018), https://www.theguardian.com/world/2018/aug/16/bridges-across-europe-are-in-a-dangerous-state-warn-experts, The Guardian (theguardian.com).
- Cebon, D. (1999), Handbook of Vehicle-Road Interaction, Swets & Zeitlinger Publishers.
- Elhattab, A., Uddin, N. and OBrien, E. (2016), "Drive-by bridge damage monitoring using bridge displacement profile difference", J. Civil Struct. Health Monit., 6(5), 839-850. https://doi.org/10.1007/s13349-016-0203-6.
- European Commission (2020), EU Transport in Figures, Publications Office of the EU.
- Ferrovie dello Stato (1949), Disegno d'insieme. Linea: Voghera - Pavia; Ponte: sul fiume Po a Mezzana Corti, Archivio documenti Direzione Territoriale di Milano.
- Fujino, Y., Siringoringo, D.M. and Abe, M. (2009), "The needs for advanced sensor technologies in risk assessment of civil infrastructures", Smart Struct. Syst., 5(2), 173-191. https://doi.org/10.12989/sss.2009.5.2.173.
- Germany tries to close infrastructure backlog (2018), https://www.dw.com/en/germany-tries-to-close-infrastructure-backlog/a-45082919, Deutsche Welle (dw.com).
- Gkoumas, K., Gkoktsi, K., Bono, F., Galassi, M.C., Tirelli, D., Zona, A. and Nguyen, A. (2021), "The way forward for indirect Structural Health Monitoring (iSHM) using connected and automated vehicles in Europe", Infrastructures, 6(3). https://doi.org/10.3390/infrastructures.
- Gonzalez, A., Covian, E. and Madera, J. (2008), "Determination of bridge natural frequencies using a moving vehicle instrumented with accelerometers and a geographical positioning system", Civil-Comp Proceedings, 88. https://doi.org/10.4203/ccp.88.281.
- Gonzalez, A., Obrien, E.J. and Mcgetrick, P.J. (2010), "Detection of bridge dynamic parameters using an instrumented vehicle", Proceedings of the 5th World Conference on Structural Control and Monitoring, Tokyo, July. https://www.researchgate.net/publication/269409631.
- Gonzalez, A., Obrien, E.J. and McGetrick, P.J. (2012), "Identification of damping in a bridge using a moving instrumented vehicle", J. Sound Vib., 331(18), 4115-4131. https://doi.org/10.1016/j.jsv.2012.04.019.
- Jeong, Y., Kim, W.S., Lee, I. and Lee, J. (2018), "Bridge inspection practices and bridge management programs in China, Japan, Korea, and U.S.", J. Struct. Integrity Maint., 3(2), 126-135. https://doi.org/10.1080/24705314.2018.1461548.
- Keenahan, J., OBrien, E.J., McGetrick, P.J. and Gonzalez, A. (2014), "The use of a dynamic truck-trailer drive-by system to monitor bridge damping", Struct. Health Monit., 13(2), 143-157. https://doi.org/10.1177/1475921713513974.
- Kim, C.W., Inoue, S., Sugiura, K., McGetrick, P.J. and Kawatani, M. (2016), "Extracting bridge frequencies from dynamic responses of two passing vehicles", Insights and Innovations in Structural Engineering, Mechanics and Computation - Proceedings of the 6th International Conference on Structural Engineering, Mechanics and Computation, SEMC 2016, 1858-1864. https://doi.org/10.1201/9781315641645-307.
- Limongelli, M.P., Gentile, C., Biondini, F., di Prisco, M., Ballio, F., Belloli, M., Resta, F., Vigo, P. and Colombo, A. (2022), "The MoRe guidelines for monitoring of transport infrastructures", Proceedings of the 1st Conference of the European Association on Quality Control of Bridges and Structures, Padua, August-September. https://doi.org/10.1007/978-3-030-91877-4_35.
- Lin, C.W. and Yang, Y.B. (2005), "Use of a passing vehicle to scan the fundamental bridge frequencies: An experimental verification", Eng. Struct., 27(13), 1865-1878. https://doi.org/10.1016/j.engstruct.2005.06.016.
- Malekjafarian, A., McGetrick, P.J. and Obrien, E.J. (2015), "A review of indirect bridge monitoring using passing vehicles", Shock Vib., 2015. https://doi.org/10.1155/2015/286139.
- Malekjafarian, A., Martinez, D. and Obrien, E.J. (2018), "The feasibility of using laser doppler vibrometer measurements from a passing vehicle for bridge damage detection", Shock Vib., 2018. https://doi.org/10.1155/2018/9385171.
- Martinez, D., Obrien, E.J. and Sevillano, E. (2016), "Damage detection by drive-by monitoring using the vertical displacements of a bridge", Proceedings of the 6th International Conference on Structural Engineering, Mechanics and Computation, Cape Town, September. https://doi.org/10.1201/9781315641645-341.
- Mastinu, G. and Ploechl, M. (2014), Road and Off-Road Vehicle Systems Dynamics Handbook, CRC Press.
- Matarazzo, T. J., Santi, P., Pakzad, S. N., Carter, K., Ratti, C., Moaveni, B., Osgood, C. and Jacob, N. (2018), "Crowdsensing framework for monitoring bridge vibrations using moving smartphones", Proceedings of the IEEE, 106(4), 577-593. https://doi.org/10.1109/JPROC.2018.2808759.
- Matarazzo, T.J., Kondor, D., Milardo, S., Eshkevari, S.S., Santi, P., Pakzad, S.N., Buehler, M.J. and Ratti, C. (2020), "Crowdsourcing bridge vital signs with smartphone vehicle trips", http://arxiv.org/abs/2010.07026.
- MATLAB R2022a, The MathWorks, Inc., Natick, Massachusetts, United States.
- MATLAB pwelch (2006), Welch's power spectral density estimate; The MathWorks, Inc., Natick, Massachusetts, United States. https://www.mathworks.com/help/signal/ref/pwelch.html.
- MATLAB tukeywin (2006), Tukey (tapered cosine) window; The MathWorks, Inc., Natick, Massachusetts, United States. https://www.mathworks.com/help/signal/ref/tukeywin.html.
- McGetrick, P.J., Gonzalez, A. and OBrien, E.J. (2009), "Theoretical investigation of the use of a moving vehicle to identify bridge dynamic parameters", Insight: Non-Destructive Testing and Condition Monitoring, 51(8), 433-438. https://doi.org/10.1784/insi.2009.51.8.433.
- Mcgetrick, P.J. and Kim, C.W. (2013), "A parametric study of a drive by bridge inspection system based on the Morlet wavelet", Key Eng. Mater., 569-570, 262-269. https://doi.org/10.4028/www.scientific.net/KEM.569-570.262.
- McGetrick, P.J., Hester, D. and Taylor, S.E. (2017), "Implementation of a drive-by monitoring system for transport infrastructure utilising smartphone technology and GNSS", J. Civil Struct. Health Monit., 7(2), 175-189. https://doi.org/10.1007/s13349-017-0218-7.
- OBrien, E.J. and Malekjafarian, A. (2016), "A mode shape-based damage detection approach using laser measurement from a vehicle crossing a simply supported bridge", Struct. Control Health Monit., 23(10), 1273-1286. https://doi.org/10.1002/stc.1841.
- OBrien, E.J., Malekjafarian, A. and Gonzalez, A. (2017), "Application of empirical mode decomposition to drive-by bridge damage detection", Eur. J. Mech. A/Solids, 61, 151-163. https://doi.org/10.1016/j.euromechsol.2016.09.009.
- Regione Lombardia (2020), Scheda Manufatto, STRADENET: Sistema Informativo Strade di Regione Lombardia.
- Regione Lombardia - Politecnico di Milano (2019). Accordo Di Collaborazione Tra Regione Lombardia E Politecnico Di Milano Per La Definizione Di Criteri E Linee Guida Per La Manutenzione E Gestione Delle Infrastrutture Viarie.
- Shokravi, H., Shokravi, H., Bakhary, N., Heidarrezaei, M., Koloor, S.S.R. and Petru, M. (2020), "Vehicle-assisted techniques for health monitoring of bridges", Sensors, 20(12), 1-29. https://doi.org/10.3390/s20123460.
- Singh, P. and Sadhu, A. (2022), "A hybrid time-frequency method for robust drive-by modal identification of bridges", Eng. Struct., 266(2022). https://doi.org/10.1016/j.engstruct.2022.114624.
- Siringoringo, D.M. and Fujino, Y. (2012), "Estimating bridge fundamental frequency from vibration response of instrumented passing vehicle: Analytical and experimental study", Adv. Struct. Eng., 15(3), 417-433. https://doi.org/10.1260/1369-4332.15.3.417.
- Sitton, J.D., Zeinali, Y., Rajan, D. and Story, B.A. (2020), "Frequency estimation on two-span continuous bridges using dynamic responses of passing vehicles", J. Eng. Mech., 146(1). https://doi.org/10.1061/(asce)em.1943-7889.0001698.
- Thousands of UK bridges at risk of collapse, warns RAC (2017), https://www.independent.co.uk/news/uk/home-news/thousands-uk-bridges-substandard-at-risk-of-collapse-not-fit-to-take-weight-lorries-hgvs-a7621661.html, The Independent (independent.co.uk).
- Yang, Y.B., Lin, C. W. and Yau, J. D. (2004), "Extracting bridge frequencies from the dynamic response of a passing vehicle", J. Sound Vib., 272(3-5), 471-493. https://doi.org/10.1016/S0022-460X(03)00378-X.
- Yang, Y.B. and Chang, K.C. (2009a), "Extraction of bridge frequencies from the dynamic response of a passing vehicle enhanced by the EMD technique", J. Sound Vib., 322(4-5), 718-739. https://doi.org/10.1016/j.jsv.2008.11.028.
- Yang, Y.B. and Chang, K.C. (2009b), "Extracting the bridge frequencies indirectly from a passing vehicle: Parametric study", Eng. Struct., 31(10), 2448-2459. https://doi.org/10.1016/j.engstruct.2009.06.001.
- Yang, Y.B. and Yang, J.P. (2018), "State-of-the-art review on modal identification and damage detection of bridges by moving test vehicles", Int. J. Struct. Stab. Dynam., 18(2). https://doi.org/10.1142/S0219455418500256.
- Yang, Y.B., Li, Z., Wang, Z.L., Shi, K., Xu, H., Qiu, F.Q. and Zhu, J.F. (2022), "A novel frequency-free movable test vehicle for retrieving modal parameters of bridges: Theory and experiment", Mech. Syst. Signal Pr., 170. https://doi.org/10.1016/j.ymssp.2022.108854.
- Zhang, Y., Wang, L. and Xiang, Z. (2012), "Damage detection by mode shape squares extracted from a passing vehicle", J. Sound Vib., 331(2), 291-307. https://doi.org/10.1016/j.jsv.2011.09.004.