과제정보
This work was supported by the Kumoh National Institute of Technology (2019104119).
참고문헌
- Wood ZA, Schroder E, Robin Harris J, Poole LB. 2003. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28: 32-40. https://doi.org/10.1016/S0968-0004(02)00003-8
- Yin G, Niu T, Yu T, Gan Y, Sun X, Yin P, et al. 2019. Simultaneous visualization of endogenous homocysteine, cysteine, glutathione, and their transformation through different fluorescence channels. Angew. Chem. Int. Ed. Engl. 58: 4557-4561. https://doi.org/10.1002/anie.201813935
- Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. 1998. Folate, Vitamin B12, and serum total homocysteine levels in confirmed alzheimer disease. Arch. Neurol. 55: 1449-1455. https://doi.org/10.1001/archneur.55.11.1449
- Nygard O, Vollset SE, Refsum H, Cappelen I, Tverdal A, Nordrehaug J, et al. 1995. Total plasma homocysteine and cardiovascular risk profile. The hordaland homocysteine study. JAMA 274: 1526-1533. https://doi.org/10.1001/jama.1995.03530190040032
- Page JH, Ma J, Chiuve SE, Stampfer MJ, Selhub J, Manson JE, et al. 2010. Plasma total cysteine and total homocysteine and risk of myocardial infarction in women: a prospective study. Am. Heart J. 159: 599-604. https://doi.org/10.1016/j.ahj.2009.12.037
- Ueland PM, Refsum H, Beresford SA, Vollset SE. 2000. The controversy over homocysteine and cardiovascular risk. Am. J. Clin. Nutr. 72: 324-332. https://doi.org/10.1093/ajcn/72.2.324
- Park S-H, Lee J-Y, Cho H-N, Kim K-R, Yang S-A, Kim H-J, et al. 2019. Simple and novel assay of the host-guest complexation of homocysteine with Cucurbit[7]uril. J. Microbiol. Biotechnol. 29: 114-126. https://doi.org/10.4014/jmb.1811.11029
- Inoue T, Kirchhoff JR. 2002. Determination of thiols by capillary electrophoresis with amperometric detection at a coenzyme pyrroloquinoline quinone modified electrode. Anal. Chem. 74: 1349-1354. https://doi.org/10.1021/ac0108515
- Wang W, Rusin O, Xu X, Kim KK, Escobedo JO, Fakayode SO, et al. 2005. Detection of homocysteine and cysteine. J. Am. Chem. Soc. 127: 15949-15958. https://doi.org/10.1021/ja054962n
- Rusin O, St. Luce NN, Agbaria RA, Escobedo JO, Jiang S, Warner IM, et al. 2004. Visual detection of cysteine and homocysteine. J. Am. Chem. Soc. 126: 438-439. https://doi.org/10.1021/ja036297t
- Wang J, Liu Y, Jiang M, Li Y, Xia L, Wu P. 2018. Aldehyde-functionalized metal-organic frameworks for selective sensing of homocysteine over Cys, GSH and other natural amino acids. Chem. Commun. 54: 1004-1007. https://doi.org/10.1039/c7cc08414e
- Niu L-Y, Chen Y-Z, Zheng H-R, Wu L-Z, Tung C-H, Yang Q-Z. 2015. Design strategies of fluorescent probes for selective detection among biothiols. Chem. Soc. Rev. 44: 6143-6160. https://doi.org/10.1039/C5CS00152H
- Fan W, Huang X, Shi X, Wang Z, Lu Z, Fan C, et al. 2017. A simple fluorescent probe for sensing cysteine over homocysteine and glutathione based on PET. Spectrochim. Acta A Mol. Biomol. Spectrosc. 173: 918-923. https://doi.org/10.1016/j.saa.2016.10.060
- Wang W, Li L, Liu S, Ma C, Zhang S. 2008. Determination of physiological thiols by electrochemical detection with piazselenole and its application in rat breast cancer cells 4T-1. J. Am. Chem. Soc. 130: 10846-10847. https://doi.org/10.1021/ja802273p
- Lee MJ, Shee NK, Son J-I, Karthikeyan S, Jhee K-H, Lee JY, et al. 2019. Supramolecular complexation of homocysteine and cysteine with cucurbit[7]uril. Supramol. Chem. 31: 369-376. https://doi.org/10.1080/10610278.2019.1593414
- Li J, Loh X. 2008. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv. Drug Del. Rev. 60: 1000-1017. https://doi.org/10.1016/j.addr.2008.02.011
- Busschaert N, Caltagirone C, Van Rossom W, Gale PA. 2015. Applications of supramolecular anion recognition. Chem. Rev. 115: 8038-8155. https://doi.org/10.1021/acs.chemrev.5b00099
- Barrow SJ, Kasera S, Rowland MJ, Del Barrio J, Scherman OA. 2015. Cucurbituril-based molecular recognition. Chem. Rev. 115: 12320-12406. https://doi.org/10.1021/acs.chemrev.5b00341
- Biedermann F, Nau WM. 2014. Noncovalent chirality sensing ensembles for the detection and reaction monitoring of amino acids, peptides, proteins, and aromatic drugs. Angew. Chem. Int. Ed. Engl. 53: 5694-5699. https://doi.org/10.1002/anie.201400718
- Gao Z-Z, Lin R-L, Bai D, Tao Z, Liu J-X, Xiao X. 2017. Host-guest complexation of cucurbit[8]uril with two enantiomers. Sci. Rep. 7: 44717. https://doi.org/10.1038/srep44717
- Freeman WA, Mock WL, Shih NY. 1981. Cucurbituril. J. Am. Chem. Soc. 103: 7367-7368. https://doi.org/10.1021/ja00414a070
- Masson E, Ling X, Joseph R, Kyeremeh-Mensah L, Lu X. 2012. Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2: 1213-1247. https://doi.org/10.1039/C1RA00768H
- Urbach AR, Ramalingam V. 2011. Molecular recognition of amino acids, peptides, and proteins by Cucurbit[n]uril receptors. Isr. J. Chem. 51: 664-678. https://doi.org/10.1002/ijch.201100035
- Ahmed KA, Sawa T, Akaike T. 2011. Protein cysteine S-guanylation and electrophilic signal transduction by endogenous nitro-nucleotides. Amino Acids 41: 123-130. https://doi.org/10.1007/s00726-010-0535-1
- Iciek M, Chwatko G, Lorenc-Koci E, Bald E, Wlodek L. 2004. Plasma levels of total, free and protein bound thiols as well as sulfane sulfur in different age groups of rats. Acta Biochim. Pol. 51: 815-824. https://doi.org/10.18388/abp.2004_3564
- Krasia TC, Steinke JH. 2002. Formation of oligotriazoles catalysed by cucurbituril. Chem. Commun. 7: 22-23. https://doi.org/10.1039/b108519k
- Wieland M, Mieusset J-L, Brinker UH. 2012. Cucurbit [6] uril as a potential catalyst for the acidic decomposition of azidoaminoalkanes. Tetrahedron Lett. 53: 4351-4353. https://doi.org/10.1016/j.tetlet.2012.06.016
- Xu L, Fang G, Yu Y, Ma Y, Ye Z, Li Z. 2019. Molecular mechanism of heterogeneous supramolecular catalysis of metal-free cucurbituril solid for epoxide alcoholysis. Mol. Catal. 467: 1-8. https://doi.org/10.1016/j.mcat.2019.01.021
- Mock WL, Shih NY. 1986. Structure and selectivity in host-guest complexes of cucurbituril. J. Org. Chem. 51: 4440-4446. https://doi.org/10.1021/jo00373a018