DOI QR코드

DOI QR Code

Selective Homocysteine Assay with Cucurbit[7]uril by pH Regulation

  • Bae, Won-Bin (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Kim, Hee-Joon (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Jhee, Kwang-Hwan (Department of Applied Chemistry, Kumoh National Institute of Technology)
  • Received : 2022.01.14
  • Accepted : 2022.01.21
  • Published : 2022.04.28

Abstract

We report the effect of pH on the supramolecular complexation of two biothiols, viz., homocysteine (Hcy) and cysteine (Cys), with cucurbit[7]uril (CB[7]). Under basic pH conditions, Cys did not complex with CB[7], whereas Hcy efficiently complexed with CB[7], as confirmed by 1H NMR spectroscopy and Ellman's reagent (5,5'-dithio-bis(2-nitrobenzoic acid), DTNB) assay. 1H NMR and Raman spectroscopic studies revealed that, in the absence of CB[7], Hcy auto-oxidized slowly (~36 h) to homocystine (HSSH) under basic pH conditions. However, the rate of Hcy oxidation increased by up to 150 fold in the presence of CB[7], as suggested by the DTNB assay. Thus, supramolecular complexation under basic pH conditions led to the formation of a HSSH-CB[7] complex, and not Hcy-CB[7]. The results indicate that Hcy is rapidly oxidized to HSSH under the catalysis of CB[7], which acts as a reaction chamber, in basic pH conditions. Our studies suggest that Hcy concentration, a risk factor for cardiovascular disease, can be selectively and more easily quantified by supramolecular complexation with CB [7].

Keywords

Acknowledgement

This work was supported by the Kumoh National Institute of Technology (2019104119).

References

  1. Wood ZA, Schroder E, Robin Harris J, Poole LB. 2003. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28: 32-40. https://doi.org/10.1016/S0968-0004(02)00003-8
  2. Yin G, Niu T, Yu T, Gan Y, Sun X, Yin P, et al. 2019. Simultaneous visualization of endogenous homocysteine, cysteine, glutathione, and their transformation through different fluorescence channels. Angew. Chem. Int. Ed. Engl. 58: 4557-4561. https://doi.org/10.1002/anie.201813935
  3. Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. 1998. Folate, Vitamin B12, and serum total homocysteine levels in confirmed alzheimer disease. Arch. Neurol. 55: 1449-1455. https://doi.org/10.1001/archneur.55.11.1449
  4. Nygard O, Vollset SE, Refsum H, Cappelen I, Tverdal A, Nordrehaug J, et al. 1995. Total plasma homocysteine and cardiovascular risk profile. The hordaland homocysteine study. JAMA 274: 1526-1533. https://doi.org/10.1001/jama.1995.03530190040032
  5. Page JH, Ma J, Chiuve SE, Stampfer MJ, Selhub J, Manson JE, et al. 2010. Plasma total cysteine and total homocysteine and risk of myocardial infarction in women: a prospective study. Am. Heart J. 159: 599-604. https://doi.org/10.1016/j.ahj.2009.12.037
  6. Ueland PM, Refsum H, Beresford SA, Vollset SE. 2000. The controversy over homocysteine and cardiovascular risk. Am. J. Clin. Nutr. 72: 324-332. https://doi.org/10.1093/ajcn/72.2.324
  7. Park S-H, Lee J-Y, Cho H-N, Kim K-R, Yang S-A, Kim H-J, et al. 2019. Simple and novel assay of the host-guest complexation of homocysteine with Cucurbit[7]uril. J. Microbiol. Biotechnol. 29: 114-126. https://doi.org/10.4014/jmb.1811.11029
  8. Inoue T, Kirchhoff JR. 2002. Determination of thiols by capillary electrophoresis with amperometric detection at a coenzyme pyrroloquinoline quinone modified electrode. Anal. Chem. 74: 1349-1354. https://doi.org/10.1021/ac0108515
  9. Wang W, Rusin O, Xu X, Kim KK, Escobedo JO, Fakayode SO, et al. 2005. Detection of homocysteine and cysteine. J. Am. Chem. Soc. 127: 15949-15958. https://doi.org/10.1021/ja054962n
  10. Rusin O, St. Luce NN, Agbaria RA, Escobedo JO, Jiang S, Warner IM, et al. 2004. Visual detection of cysteine and homocysteine. J. Am. Chem. Soc. 126: 438-439. https://doi.org/10.1021/ja036297t
  11. Wang J, Liu Y, Jiang M, Li Y, Xia L, Wu P. 2018. Aldehyde-functionalized metal-organic frameworks for selective sensing of homocysteine over Cys, GSH and other natural amino acids. Chem. Commun. 54: 1004-1007. https://doi.org/10.1039/c7cc08414e
  12. Niu L-Y, Chen Y-Z, Zheng H-R, Wu L-Z, Tung C-H, Yang Q-Z. 2015. Design strategies of fluorescent probes for selective detection among biothiols. Chem. Soc. Rev. 44: 6143-6160. https://doi.org/10.1039/C5CS00152H
  13. Fan W, Huang X, Shi X, Wang Z, Lu Z, Fan C, et al. 2017. A simple fluorescent probe for sensing cysteine over homocysteine and glutathione based on PET. Spectrochim. Acta A Mol. Biomol. Spectrosc. 173: 918-923. https://doi.org/10.1016/j.saa.2016.10.060
  14. Wang W, Li L, Liu S, Ma C, Zhang S. 2008. Determination of physiological thiols by electrochemical detection with piazselenole and its application in rat breast cancer cells 4T-1. J. Am. Chem. Soc. 130: 10846-10847. https://doi.org/10.1021/ja802273p
  15. Lee MJ, Shee NK, Son J-I, Karthikeyan S, Jhee K-H, Lee JY, et al. 2019. Supramolecular complexation of homocysteine and cysteine with cucurbit[7]uril. Supramol. Chem. 31: 369-376. https://doi.org/10.1080/10610278.2019.1593414
  16. Li J, Loh X. 2008. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv. Drug Del. Rev. 60: 1000-1017. https://doi.org/10.1016/j.addr.2008.02.011
  17. Busschaert N, Caltagirone C, Van Rossom W, Gale PA. 2015. Applications of supramolecular anion recognition. Chem. Rev. 115: 8038-8155. https://doi.org/10.1021/acs.chemrev.5b00099
  18. Barrow SJ, Kasera S, Rowland MJ, Del Barrio J, Scherman OA. 2015. Cucurbituril-based molecular recognition. Chem. Rev. 115: 12320-12406. https://doi.org/10.1021/acs.chemrev.5b00341
  19. Biedermann F, Nau WM. 2014. Noncovalent chirality sensing ensembles for the detection and reaction monitoring of amino acids, peptides, proteins, and aromatic drugs. Angew. Chem. Int. Ed. Engl. 53: 5694-5699. https://doi.org/10.1002/anie.201400718
  20. Gao Z-Z, Lin R-L, Bai D, Tao Z, Liu J-X, Xiao X. 2017. Host-guest complexation of cucurbit[8]uril with two enantiomers. Sci. Rep. 7: 44717. https://doi.org/10.1038/srep44717
  21. Freeman WA, Mock WL, Shih NY. 1981. Cucurbituril. J. Am. Chem. Soc. 103: 7367-7368. https://doi.org/10.1021/ja00414a070
  22. Masson E, Ling X, Joseph R, Kyeremeh-Mensah L, Lu X. 2012. Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2: 1213-1247. https://doi.org/10.1039/C1RA00768H
  23. Urbach AR, Ramalingam V. 2011. Molecular recognition of amino acids, peptides, and proteins by Cucurbit[n]uril receptors. Isr. J. Chem. 51: 664-678. https://doi.org/10.1002/ijch.201100035
  24. Ahmed KA, Sawa T, Akaike T. 2011. Protein cysteine S-guanylation and electrophilic signal transduction by endogenous nitro-nucleotides. Amino Acids 41: 123-130. https://doi.org/10.1007/s00726-010-0535-1
  25. Iciek M, Chwatko G, Lorenc-Koci E, Bald E, Wlodek L. 2004. Plasma levels of total, free and protein bound thiols as well as sulfane sulfur in different age groups of rats. Acta Biochim. Pol. 51: 815-824. https://doi.org/10.18388/abp.2004_3564
  26. Krasia TC, Steinke JH. 2002. Formation of oligotriazoles catalysed by cucurbituril. Chem. Commun. 7: 22-23. https://doi.org/10.1039/b108519k
  27. Wieland M, Mieusset J-L, Brinker UH. 2012. Cucurbit [6] uril as a potential catalyst for the acidic decomposition of azidoaminoalkanes. Tetrahedron Lett. 53: 4351-4353. https://doi.org/10.1016/j.tetlet.2012.06.016
  28. Xu L, Fang G, Yu Y, Ma Y, Ye Z, Li Z. 2019. Molecular mechanism of heterogeneous supramolecular catalysis of metal-free cucurbituril solid for epoxide alcoholysis. Mol. Catal. 467: 1-8. https://doi.org/10.1016/j.mcat.2019.01.021
  29. Mock WL, Shih NY. 1986. Structure and selectivity in host-guest complexes of cucurbituril. J. Org. Chem. 51: 4440-4446. https://doi.org/10.1021/jo00373a018