DOI QR코드

DOI QR Code

Establishment of a Nondestructive Analysis Method for Lignan Content in Sesame using Near Infrared Reflectance Spectroscopy

근적외선분광(NIRS)을 이용한 참깨의 lignan 함량 비파괴 분석 방법 확립

  • 이정은 (농촌진흥청 국립식량과학원) ;
  • 김성업 (농촌진흥청 국립식량과학원) ;
  • 이명희 (농촌진흥청 국립식량과학원) ;
  • 김정인 (농촌진흥청 국립식량과학원) ;
  • 오은영 (농촌진흥청 국립식량과학원) ;
  • 김상우 (농촌진흥청 국립식량과학원) ;
  • 김민영 (농촌진흥청 국립식량과학원) ;
  • 박재은 (농촌진흥청 국립식량과학원) ;
  • 조광수 (농촌진흥청 국립식량과학원) ;
  • 오기원 (농촌진흥청 국립식량과학원)
  • Received : 2021.11.16
  • Accepted : 2022.01.19
  • Published : 2022.03.01

Abstract

Sesamin and sesamolin are major lignan components with a wide range of potential biological activities of sesame seeds. Near infrared reflectance spectroscopy (NIRS) is a rapid and non-destructive analysis method widely used for the quantitative determination of major components in many agricultural products. This study was conducted to develop a screening method to determine the lignan contents for sesame breeding. Sesamin and sesamolin contents of 482 sesame samples ranged from 0.03-14.40 mg/g and 0.10-3.79 mg/g with an average of 4.93 mg/g and 1.74 mg/g, respectively. Each sample was scanned using NIRS and calculated for the calibration and validation equations. The optimal performance calibration model was obtained from the original spectra using partial least squares (PLS). The coefficient of determination in calibration (R2) and standard error of calibration (SEC) were 0.963 and 0.861 for sesamin and 0.875 and 0.292 for sesamolin, respectively. Cross-validation results of the NIRS equation showed an R2 of 0.889 in the prediction for sesamin and 0.781 for sesamolin and a standard error of cross-validation (SECV) of 1.163 for sesamin and 0.417 for sesamolin. The results showed that the NIRS equation for sesamin and sesamolin could be effective in selecting high lignan sesame lines in early generations of sesame breeding.

본 연구는 참깨에 함유된 세사민 및 세사몰린의 함량을 비파괴적으로 신속하게 평가하기 위하여 NIRS 분석을 이용해 검량식을 작성하고 검량식의 적용가능성을 검증하였다. 검량식 작성에 사용된 482점 참깨의 HPLC 분석 결과를 NIRS 스펙트럼에 적용시킨 후 검량식을 작성하였다. 세사민 및 세사몰린의 R2 값은 각각 0.936, 0.875로 조사되었으며 이를 cross validation 한 결과에서도 각각 0.899, 0.781로 조사되어 리그난 함량 분석에 적용 가능할 것으로 판단되었다. 작성된 검량식의 적용가능성을 확인하기 위해 2020년에 생산된 참깨 유전자원 90종의 종자를 NIRS를 통해 분석한 결과 세사민 및 세사몰린의 R2값이 각각 0.653, 0.596으로 크게 낮아졌으나 리그난 함량이 높은 상위 30%의 자원을 선발하는데 무리가 없었다. 따라서 본 연구에서 작성된 NIRS 검량식은 육종 초기에 고리그난 함량을 선발하는데 적용 가능할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 아젠다 사업(사업번호: PJ014155022021)의 지원에 의해 이루어진 결과로 이에 감사드립니다.

References

  1. Anilakumar, K. R., A. Pal, F. Khanum, and A. S. Bawa. 2010. Nutritional, medicinal and industrial uses of sesame (Sesamum indicum L.) seeds-an overview. Agriculturae Conspectus Scientificus, 75(4) : 159-168.
  2. Chen, Q., J. Zhao, M. Liu, J. Cai, and J. Liu. 2008. Determination of total polyphenols content in green tea using FT-NIR spectroscopy and different PLS algorithms. Journal of Pharmaceutical and Biomedical Analysis, 46(3) : 568-573. https://doi.org/10.1016/j.jpba.2007.10.031
  3. Cho, H. J. and Y. L. Ha. 2002. Determination of honey quality by near infrared spectroscopy. Korean journal of food science and technology, 34(3) : 356-360.
  4. Cho, H. S., J. H. Ryu, and J. J. Liu. 2011. Development of an On-line Measurement Method for Clean Biofuel Based on Near Infrared Spectroscopy and Chemometrics. Clean Technology, 17(3) : 215-224. https://doi.org/10.7464/KSCT.2011.17.3.215
  5. Choi, Y., D. Hyun, S. Lee, M. Lee, S. Oh, J. Lee, H. Ko, O. Huh, and M. Yoon. 2016. Development of NIRS equations and mass evaluation of crude protein, oil and composition of fatty acid by near infrared reflectance spectroscopy (NIRS) in soybean landraces from Korea. Korean Journal of Breeding Science, 48(4) : 406-413. https://doi.org/10.9787/KJBS.2016.48.4.406
  6. Kim, H. J., S. Y. Kim, Y. S. Lee, and Y. H. Kim. 2014. Determination of baicalin and baicalein contents in Scutellaria baicalensis by NIRS. Korean Journal of Plant Resources, 27(4) : 286-292. https://doi.org/10.7732/KJPR.2014.27.4.286
  7. Kim, K. S., S. H. Park, and M. G. Choung. 2006. Nondestructive determination of lignans and lignan glycosides in sesame seeds by near infrared reflectance spectroscopy. Journal of agricultural and food chemistry, 54(13) : 4544-4550. https://doi.org/10.1021/jf0605603
  8. Kim, Y. H., H. K. Ahn, E. S. Lee, and H. D. Kim. 2008. Development of prediction model by NIRS for anthocyanin contents in black colored soybean. Korean Journal of Crop Science, 53(1) : 15-20.
  9. Kumar, C. M. and S. A. Singh. 2015. Bioactive lignans from sesame (Sesamum indicum L.): evaluation of their antioxidant and antibacterial effects for food applications. Journal of Food Science and Technology, 52(5) : 2934-2941. https://doi.org/10.1007/s13197-014-1334-6
  10. Lim, J. S., Y. Adachi, Y. Takahashi, and T. Ide. 2007. Comparative analysis of sesame lignans (sesamin and sesamolin) in affecting hepatic fatty acid metabolism in rats. British journal of nutrition, 97(1) : 85-95. https://doi.org/10.1017/S0007114507252699
  11. Matsumura, S., K. Murata, N. Zaima, Y. Yoshioka, M. Morimoto, H. Matsuda, and M. Iwaki. 2016. Inhibitory activities of sesame seed extract and its constituents against β-secretase. Natural product communications, 11(11) : 1934578X1601101112.
  12. Morris, J. B. 2002. Food, industrial, nutraceutical, and pharmaceutical uses of sesame genetic resources. Trends in new crops and new uses, 1(1) : 153-156.
  13. Namiki, M. 1995. The chemistry and physiological functions of sesame. Food reviews international, 11(2) : 281-329. https://doi.org/10.1080/87559129509541043
  14. Ogawa, H., S. Sasagawa, T. Murakami, and H. Yoshizumi. 1995. Sesame lignans modulate cholesterol metabolism in the stroke-prone spontaneously hypertensive rat. Clinical and Experimental Pharmacology and Physiology, 22 : S310-S312. https://doi.org/10.1111/j.1440-1681.1995.tb02932.x
  15. Oh, S., M. C. Lee, Y. M. Choi, S. Lee, M. Oh, A. Ali, B. Chae, and D. Y. Hyun. 2017. Development of near-infrared reflectance spectroscopy (NIRS) model for amylose and crude protein contents analysis in rice germplasm. Korean Journal of Plant Resources, 30(1) : 38-49. https://doi.org/10.7732/KJPR.2016.30.1.038
  16. Park, H. S., S. H. Lee, K. C. Choi, Y. C. Lim, J. G. Kim, K. C. Jo, and G. J. Choi. 2012. Evaluation of the quality of Italian ryegrass silages by near infrared spectroscopy. Journal of The Korean Society of Grassland and Forage Science, 32(3) : 301-308. https://doi.org/10.5333/KGFS.2012.32.3.301
  17. Rangkadilok, N., N. Pholphana, C. Mahidol, W. Wongyai, K. Saengsooksree, S. Nookabkaew, and J. Satayavivad. 2010. Variation of sesamin, sesamolin and tocopherols in sesame (Sesamum indicum L.) seeds and oil products in Thailand. Food Chemistry, 122(3) : 724-730. https://doi.org/10.1016/j.foodchem.2010.03.044
  18. Salgo, A. and S. Gergely. 2012. Analysis of wheat grain development using NIR spectroscopy. Journal of Cereal Science, 56(1) : 31-38. https://doi.org/10.1016/j.jcs.2012.04.011
  19. Sampaio, P. S., A. Soares, A. Castanho, A. S. Almeida, J. Oliveira, and C. Brites. 2018. Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms. Food Chemistry, 242 : 196-204. https://doi.org/10.1016/j.foodchem.2017.09.058
  20. Sato, T., A. A. Maw, and M. Katsuta. 2003. NIR reflectance spectroscopic analysis of the FA composition in sesame (Sesamum indicum L.) seeds. Journal of the American Oil Chemists' Society, 80(12) : 1157-1161. https://doi.org/10.1007/s11746-003-0835-5
  21. Wang, L., Y. Zhang, P. Li, W. Zhang, X. Wang, X. Qi, and X. Zhang. 2013. Variation of sesamin and sesamolin contents in sesame cultivars from China. Pak J Bot, 45 : 177-182.
  22. Xia, Z., T. Yi, and Y. Liu. 2020. Rapid and nondestructive determination of sesamin and sesamolin in Chinese sesames by near-infrared spectroscopy coupling with chemometric method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 228 : 117777. https://doi.org/10.1016/j.saa.2019.117777