DOI QR코드

DOI QR Code

Investigation of Root Morphological and Architectural Traits in Adzuki Bean (Vigna angularis) Cultivars Using Imagery Data

  • Tripathi, Pooja (Department of Applied Bioscience, Kyungpook National University) ;
  • Kim, Yoonha (Department of Applied Bioscience, Kyungpook National University)
  • 투고 : 2021.11.16
  • 심사 : 2022.02.04
  • 발행 : 2022.03.01

초록

Roots play important roles in water and nutrient uptake and in response to various environmental stresses. Investigating diversification of cultivars through root phenotyping is important for crop improvement in adzuki beans. Therefore, we analyzed the morphological and architectural root traits of 22 adzuki bean cultivars using 2-dimensional (2D) root imaging. Plants were grown in plastic tubes [6 cm (diameter) × 40 cm (height)] in a greenhouse from July 25th to August 28th. When the plants reached the 2nd or 3rd trifoliate leaf stage, the roots were removed and washed with tap water to remove soil particles. Clean root samples were scanned, and the scanned images were analyzed using the WinRHIZO Pro software. The cultivars were analyzed based on six root phenotypes [total root length (TRL), surface area (SA), average diameter (AD), and number of tips (NT) were included as root morphological traits (RMT); and link average length (LAL) and link average diameter (LAD) were included as root architectural traits (RAT)]. According to the analysis of variance (ANOVA), a significant difference was observed between the cultivars for all root morphological traits. Distribution analysis demonstrated that all root traits except LAL followed a normally distributed curve. In the correlation test, the most important morphological trait, TRL, showed a strong positive correlation with SA (r = 0.97***) and NT (r = 0.94***). In comparison, between RMT and RAT, TRL showed a significantly negative correlation with LAL (r = -0.50***); however, TRL did not show a correlation with LAD. Based on RMT and RAT, we identified the cultivars that ranked 5% from the top and bottom. In particular, the cultivar "IT 236657" showed the highest TRL, SA, and NT, while the cultivar "IT 236169" showed the lowest values for TRL, SA, and NT. In addition, the coefficient of variance for the six tested root traits ranged from (14.26-40%) which suggested statistical variability in root phenotypes among the 22 adzuki bean varieties. Thus, this study will help to select target root traits for the adzuki bean breeding program in the future, generating climate-resilient adzuki beans, especially for drought stress, and may be useful for developing biotic and abiotic stress-tolerant cultivars based on better root trait attributes.

키워드

과제정보

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1I1A3040280).

참고문헌

  1. Amarowicz, R., I. Estrella, T. Hernandez, and A. Troszynska. 2008. Antioxidant activity of extract of adzuki bean and its fractions. J. Food Lipids. 15(1) : 119-136. https://doi.org/10.1111/j.1745-4522.2007.00106.x
  2. Chun, H. C., K. Y. Jung, Y. D. Choi, S. H. Lee, and H. W. Kang. 2016. The growth and yield changes of foxtail millet (Setaria italic L.), proso millet (Panicum miliaceum L.), sorghum (Sorghum bicolor L.), adzuki bean (Vigna angularis L.), and sesame (Sesamum indicum L.) as affected by excessive soil-water. Korean J. Agric. Sci. 43(4) : 547-559. https://doi.org/10.7744/KJOAS.20160056
  3. Chun, H. C., S. Lee, Y. D. Choi, D. H. Gong, and K. Y. Jung. 2021. Effects of drought stress on root morphology and spatial distribution of soybean and adzuki bean. J. Integr. Agric. 20(10) : 2639-2651. https://doi.org/10.1016/S2095-3119(20)63560-2
  4. Han, K. H., T. Kitano-Okada, J. M. Seo, S. J. Kim, K. Sasaki, K. I. Shimada, M. Fukushima. 2015. Characterisation of anthocyanins and proanthocyanidins of adzuki bean extracts and their antioxidant activity. J. Funct. Foods 14 : 692-701. https://doi.org/10.1016/j.jff.2015.02.018
  5. Hodge, A., G. Berta, C. Doussan, F. Merchan, and M. Crespi. 2009. Plant root growth, architecture and function. Plant Soil 321(1) : 153-187. https://doi.org/10.1007/s11104-009-9929-9
  6. Hori, Y., S. Sato, and A. Hatai. 2006. Antibacterial activity of plant extracts from azuki beans (Vigna angularis) in vitro. Phytother. Res. 20(2) : 162-164. https://doi.org/10.1002/ptr.1826
  7. Kim, K. S., S. H. Kim, J. Kim, J., P. Tripathi, J. D. Lee, Y. S. Chung, and Y. Kim. 2021a. A large root phenome dataset wide-opened the potential for underground breeding in soybean. Front. Plant Sci. 12: 704239. doi: 10.3389/fpls.2021.704239 1635.
  8. Kim, S. H., P. Tripathi, S. Yu, J. M. Park, J. D. Lee, Y. S. Chung, G. Chung, and Y. Kim. 2021b. Selection of tolerant and susceptible wild soybean (Glycine soja Siebold & Zucc.) accessions under waterlogging condition using vegetation indices. Pol. J. Environ. Stud. 30(4) : 3659-3675. https://doi.org/10.15244/pjoes/130491
  9. Kim, Y., Y. S. Chung, E. Lee, P. Tripathi, S. Heo, and K. H. Kim. 2020. Root response to drought stress in rice (Oryza sativa L.). Int. J. Mol. Sci. 21(4) : 1513. https://doi.org/10.3390/ijms21041513
  10. Kitano-Okada, T., A. Ito, A. Koide, Y. Nakamura, K. H. Han, K. Shimada, K. Sasaki, K. Ohba, S. Sibayama, and M. Fukushima. 2012. Anti-obesity role of adzuki bean extract containing polyphenols: in vivo and in vitro effects. J. Sci. Food Agric. 92(13) : 2644-2651. https://doi.org/10.1002/jsfa.5680
  11. Kumar, J., P. Basu, E. Srivastava, S. Chaturvedi, N. Nadarajan, and S. Kumar. 2012. Phenotyping of traits imparting drought tolerance in lentil. Crop Pasture Sci. 63(6) : 547-554. https://doi.org/10.1071/CP12168
  12. Kunert, K. J., B. J. Vorster, B. A. Fenta, T. Kibido, G. Dionisio, and C. H. Foyer. 2016. Drought stress responses in soybean roots and nodules. Front. Plant Sci. 7 : 1015. doi: 10.3389/fpls.2016.01015.
  13. Long, W., Q. Li, N. Wan, D. Feng, F. Kong, Y. Zhou, and J. Yuan. 2020. Root morphological and physiological characteristics in maize seedlings adapted to low iron stress. PLoS One. 15(9) : e0239075. https://doi.org/10.1371/journal.pone.0239075
  14. Luo, H., Y. Zhang, Y. Shi, X. Li, and Y. Zhang. 2014. Effects of drought stress on the physiological characteristics of different adzuki bean varieties at the seedling stage. Plant Sci. J. 32(5) : 493-501.
  15. Manschadi, A., J. Christopher, P. deVoil, and G. L. Hammer. 2006. The role of root architectural traits in adaptation of wheat to water-limited environments. Funct. Plant Biol. 33(9) : 823-837. https://doi.org/10.1071/FP06055
  16. Park, J. Y., J. Y. Yoo, M. Lee, and T. W. Kim. 2012. Assessment of drought risk in Korea: Focused on data-based drought risk map. KSCE J. Civ. Eng. 32(4B) : 203-211.
  17. Prince, S. J., M. Murphy, R. N. Mutava, L. A. Durnell, B. Valliyodan, J. G. Shannon, and H. T. Nguyen. 2017. Root xylem plasticity to improve water use and yield in water-stressed soybean. J. Exp. Bot. 68(8) : 2027-2036. https://doi.org/10.1093/jxb/erw472
  18. Tripathi, P., J. S. Abdullah, J. Kim, Y. S. Chung, S. H. Kim, M. Hamayun, and Y. Kim. 2021a. Investigation of root morphological traits using 2D-imaging among diverse soybeans (Glycine max L.). Plants 10(11) : 2535. doi.org/10.3390/plants10112535.
  19. Tripathi, P., S. Subedi, A. L. Khan, Y. S. Chung, and Y. Kim. 2021b. Silicon effects on the root system of diverse crop species using root phenotyping technology. Plants 10(5) : 885. doi.org/10.3390/plants10050885.
  20. Turner, N. C., G. C. Wright, and K. Siddique. 2001. Adaptation of grain legumes (pulses) to water-limited environments. Adv. Agron. 71 : 193-231. https://doi.org/10.1016/S0065-2113(01)71015-2
  21. Vadez, V., S. Rao, J. Kholova, L. Krishnamurthy, J. Kashiwagi, P. Ratnakumar, K. K. Sharma, P. Bhatnagarmathur, and P. S. Basu. 2008. Root research for drought tolerance in legumes: Quo vadis? J. Food Leg. 21(2) : 77-85.
  22. Wang, L., J. Wang, and X. Cheng. 2019. "Adzuki Bean (Vigna angularis (Willd.) Ohwi & Ohashi) Breeding," In: Al-Khayri J., Jain S., Johnson D. (eds) Advances in Plant Breeding Strategies : Legumes. Springer, Cham. https://doi.org/10.1007/978-3-030-23400-3_1.
  23. Xiong, R., S. Liu, M. J. Considine, J. H. Siddique, H. M. Lam, and Y. Chen. 2021. Root system architecture, physiological and transcriptional traits of soybean (Glycine max L.) in response to water deficit: A review. Physiol. Plant. 172(2) : 405-418. https://doi.org/10.1111/ppl.13201
  24. Zheng, Y., V. Hivrale, X. Zhang, B. Valliyodan, C. Lelandais-Briere, A. D. Farmer, G. D. May, M. Crespi, and H. T. Nguyen. 2016. Small RNA profiles in soybean primary root tips under water deficit. BMC Syst. Biol. 10(5) : 1-10.
  25. Zhu, Z., H. Chen, F. Liao, L. Li, C. Liu, L. Liu, F. Yang, H. Sun, R. Fan, Z. Mao, A. Sha, and Z. Wan. 2019. Evaluation and screening of adzuki bean germplasm resources for drought tolerance during germination stage. J. South. Agric. 50(6) : 1183-1190.