DOI QR코드

DOI QR Code

Performance Evaluation of OGS-FLAC Simulator for Coupled Thermal-Hydrological-Mechanical Analysis

열-수리-역학적 연계해석을 위한 OGS-FLAC 시뮬레이터의 성능 평가

  • Park, Dohyun (Deep Subsurface Storage and Disposal Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Park, Chan-Hee (Deep Subsurface Storage and Disposal Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 박도현 (한국지질자원연구원 심층처분환경연구센터) ;
  • 박찬희 (한국지질자원연구원 심층처분환경연구센터)
  • Received : 2022.04.04
  • Accepted : 2022.04.22
  • Published : 2022.04.30

Abstract

The present study developed a sequential approach-based numerical simulator for modeling coupled thermal-hydrological-mechanical (THM) processes in the ground and investigated the computational performance of the coupling analysis algorithm. The present sequential approach linked the two different solvers: an open-source numerical code, OpenGeoSys for solving the thermal and hydrological processes in porous media and a commercial code, FLAC3D for solving the geomechanical response of the ground. A benchmark test of the developed simulator was carried out using a THM problem where an analytical solution is given. The benchmark problem involves the coupled behavior (variations in temperature, pore pressure, stress, and deformation with time) of a fully saturated porous medium which is subject to a point heat source. The results of the analytical solution and numerical simulation were compared and the validity of the numerical simulator was investigated.

본 연구에서는 지반의 열-수리-역학적 복합거동을 모델링하기 위한 순차적 접근법 기반의 시뮬레이터를 개발하고 적용된 연계해석 알고리즘의 계산성능을 분석하였다. 본 연구의 순차적 연계해석에서는 다공성 매질의 열 및 유체거동 분석을 위한 오픈소스 기반의 OpenGeoSys 수치코드와 역학해석을 위한 상용 소프트웨어 FLAC3D가 연동되었다. 해석해가 주어진 열-수리-역학적 복합거동 문제를 토대로 개발된 시뮬레이터에 대한 벤치마크 테스트가 수행되었다. 적용된 벤치마크 문제는 완전포화된 지반 내 점열원 작용 시 지반거동(시간에 따른 온도, 간극수압, 응력, 변형 변화)과 관계된다. 해석해와 수치해석 시뮬레이션 결과를 비교 분석하고 연계해석 시뮬레이터의 적정성을 조사하였다.

Keywords

Acknowledgement

본 연구는 한국지질자원연구원의 기본사업인 '심지층 개발과 활용을 위한 지하심부 특성평가 기술개발(과제코드 GP2020-010)'의 일환으로 수행되었습니다.

References

  1. Blanco-Martin, L., Rutqvist, J., and Birkholzer, J.T., 2017, Extension of TOUGH-FLAC to the finite strain framework, Computers and Geosciences, 108: 67-71.
  2. Booker, J.R. and Savvidou, C., 1985, Consolidation around a point heat source, International Journal for Numerical and Analytical Methods in Geomechanics, 9: 173-184. https://doi.org/10.1002/nag.1610090206
  3. Chaudhry, A.A., Buchwald, J., Kolditz, O., and Nagel, T., 2019, Consolidation around a point heat source (correction and verification), International Journal for Numerical and Analytical Methods in Geomechanics, 43: 2743-2751. https://doi.org/10.1002/nag.2998
  4. Elyasi, A., Goshtasbi, K., and Hashemolhosseini, H., 2016, A coupled thermo-hydro-mechanical simulation of reservoir CO2 enhanced oil recovery, Energy and Environment, 27: 524-541. https://doi.org/10.1177/0958305X16665545
  5. Graupner, B., Li, D., and Bauer, S., 2011, The coupled simulator ECLIPSE - OpenGeoSys for the simulation of CO2 storage in saline formations, Energy Procedia, 4: 3794-3800. https://doi.org/10.1016/j.egypro.2011.02.314
  6. Itasca, 2021, FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) software, http://www.itascacg.com/software/flac3d [Accessed January 4, 2022].
  7. Kim, G.I., Lee, C., and Kim, J.S., 2021, A numerical study of the performance assessment of coupled thermo-hydro-mechanical (THM) processes in improved korean reference disposal system (kRS+) for high-level radioactive waste, Tunnel and Underground Space, 31: 221-242. https://doi.org/10.7474/TUS.2021.31.4.221
  8. Kim, H.M., 2015, Numerical analysis for geomechanical deformation of sea bed due to gas hydrate dissociation, Journal of the Korean Society of Mineral and Energy Resources, 52: 148-157. https://doi.org/10.12972/ksmer.2015.52.2.148
  9. Kim, H.M., Rutqvist, J., Ryu, D.W., Park, D., and Song, W.K., 2012, Numerical study on the impact of air tight liner of underground lined rock cavern for compressed air energy storage (CAES), Journal of the Korean Society of Mineral and Energy Resources. 49: 147-156.
  10. Kim, H.M., Rutqvist, J., Ryu, D.W., Synn, J.H., and Song, W.K., 2011, Geomechanical stability of underground lined rock caverns (LRC) for compressed air energy storage (CAES) using coupled thermal-hydraulic-mechanical analysis, Tunnel and Underground Space, 21: 394-405. https://doi.org/10.7474/TUS.2011.21.5.394
  11. Lim, J., Jung, S., Ki, S., Kim, Y., and Choe, J., 2007, Solute transport modeling using streamline simulation with multiple contaminant sources coupled with MODFLOW, Journal of the Korean Society of Mineral and Energy Resources, 44: 357-363.
  12. Nguyen, T.S. and Selvadurai, A.P.S., 1995, Coupled thermal-mechanical-hydrological behaviour of sparsely fractured rock: implications for nuclear fuel waste disposal, International Journal of Rock Mechanics and Mining Sciences, 32: 465-479. https://doi.org/10.1016/0148-9062(95)00036-G
  13. OpenGeoSys Community, 2021, OpenGeoSys - Open-source multi-physics, http://www.opengeosys.org [Accessed January 4, 2022].
  14. Park, C.H., Kim, T., Park, E.S., Jung, Y.B., and Bang, E.S., 2019, Development and verification of OGSFLAC simulator for hydromechanical coupled analysis: single-phase fluid flow analysis, Tunnel and Underground Space, 29: 468-479. https://doi.org/10.7474/TUS.2019.29.6.468
  15. Rutqvist, J., Wu, Y.S., Tsang, C.F., and Bodvarsson, G., 2002, A modeling approach for analysis of coupled multiphase fluid flow, Heat transfer, and deformation in fractured porous rock, International Journal of Rock Mechanics and Mining Sciences, 39: 429-442. https://doi.org/10.1016/S1365-1609(02)00022-9
  16. Taron, J., Elsworth, D., and Min, K.B., 2009, Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media, International Journal of Rock Mechanics and Mining Sciences, 46: 842-854. https://doi.org/10.1016/j.ijrmms.2009.01.008
  17. UPC (Polytechnic University of Catalonia), 2021, CODE_BRIGHT, http://deca.upc.edu/en/projects/code_bright [Accessed January 4, 2022].
  18. Yoon, S., Um, E.S., and Kim, J., 2020, Development of an integrated simulator for coupled flow, geomechanics, and geophysics based on sequential approaches, Journal of the Korean Society of Mineral and Energy Resources, 57: 309-317. https://doi.org/10.32390/ksmer.2020.57.3.309