과제정보
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2022R1A2C1011642).
참고문헌
- Jager S, H Trojan, T Kopp, MN Laszczyk, A Scheffler. 2009. Pentacyclic triterpene distribution in various plants-rich sources for a new group of multi-potent plant extracts. Molecules 14: 2016-2031. https://doi.org/10.3390/molecules14062016
- Cheng Z, Y Li, X Zhu, K Wang, Y Ali, W Shu, et al. 2021. The potential application of pentacyclic triterpenoids in the prevention and treatment of retinal diseases. Planta Med. 87: 511-527. https://doi.org/10.1055/a-1377-2596
- Ghiulai R, OJ Rosca, DS Antal, M Mioc, A Mioc, R Racoviceanu, et al., 2020. Tetracyclic and pentacyclic triterpenes with high therapeutic efficiency in wound healing approaches. Molecules 25: 5557.
- Wu P, B Tu, J Liang, S Guo, N Cao, S Chen, et al. 2021. Synthesis and biological evaluation of pentacyclic triterpenoid derivatives as potential novel antibacterial agents. Bioorg. Chem. 109: 104692.
- Kwun MS, HJ Lee, DG Lee, 2021. β-amyrin-induced apoptosis in Candida albicans triggered by calcium. Fungal Biol. 125: 630-636. https://doi.org/10.1016/j.funbio.2021.03.006
- Boar RB, J Allen. 1973. β-Amyrin triterpenoids. Phytochemistry 12: 2571-2578. https://doi.org/10.1016/0031-9422(73)85059-9
- Melo CM, KMMB Carvalho, JC de Sousa Neves, TC Morais, VS Rao, FA Santos, et al. 2010. α, β-amyrin, a natural triterpenoid ameliorates L-arginine-induced acute pancreatitis in rats. World J. Gastroenterol. 16: 4272-4280. https://doi.org/10.3748/wjg.v16.i34.4272
- Zhao X, K Drlica. 2014. Reactive oxygen species and the bacterial response to lethal stress. Curr. Opin. Microbiol. 21: 1-6. https://doi.org/10.1016/j.mib.2014.06.008
- Fasnacht M, N Polacek. 2021. Oxidative stress in bacteria and the central dogma of molecular biology. Front. Mol. Biosci. 8: 671037.
- Haanen C, I Vermes. 1995. Apoptosis and inflammation. Mediat. Inflamm. 4: 5-15. https://doi.org/10.1155/S0962935195000020
- Kim H, DG Lee. 2020. Nitric oxide-inducing genistein elicits apoptosis-like death via an intense SOS response in Escherichia coli. Appl. Microbiol. Biotechnol.104: 10711-10724. https://doi.org/10.1007/s00253-020-11003-1
- Okoye NN, DL Ajaghaku, HN Okeke, EE Ilodigwe, CS Nworu, FBC Okoye. 2014. beta-Amyrin and alpha-amyrin acetate isolated from the stem bark of Alstonia boonei display profound anti-inflammatory activity. Pharm. Biol. 52:1478-1486. https://doi.org/10.3109/13880209.2014.898078
- Elmore S 2007. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35: 495-516. https://doi.org/10.1080/01926230701320337
- Kwon DH, H-J Cha, H Lee, S-H Hong, C Park, S-H Park, et al. 2019. Protective effect of glutathione against oxidative stress-induced cytotoxicity in RAW 264.7 macrophages through activating the nuclear factor erythroid 2-related factor-2/heme oxygenase-1 pathway. Antioxidants 8: 82.
- Rahman I, A Kode, SK Biswas. 2019. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc.1: 3159-3165. https://doi.org/10.1038/nprot.2006.378
- Goldstein EJ. 1987. Norfloxacin, a fluoroquinolone antibacterial agent: classification, mechanism of action, and in vitro activity. Am. J. Med. 82: 3-17. https://doi.org/10.1016/0002-9343(87)90612-7
- Suski JM, M Lebiedzinska, M Bonora, P Pinton, J Duszynski, MR Wieckowski. 2012. Relation between mitochondrial membrane potential and ROS formation, in Mitochondrial bioenergetics. pp. 183-205. 2012, Springer.
- Moungjaroen J, U Nimmannit, PS Callery, L Wang, N Azad, V Lipipun, et al., 2006. Reactive oxygen species mediate caspase activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 down-regulation. J. Pharmacol. Exp. Ther. 319: 1062-1069. https://doi.org/10.1124/jpet.106.110965
- Edgington-Mitchell, LE, M Bogyo, Detection of active caspases during apoptosis using fluorescent activity-based probes, in Programmed Cell Death. pp. 27-39. 2016, Springer.
- Bortner CD, NB Oldenburg, JA Cidlowski. 1995. The role of DNA fragmentation in apoptosis. Trends Cell Biol. 5: 21-26. https://doi.org/10.1016/S0962-8924(00)88932-1
- Janicke RU, ML Sprengart, MR Wati, AG Porter. 1998. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem. 273: 9357-9360. https://doi.org/10.1074/jbc.273.16.9357
- Kyrylkova K, S Kyryachenko, M Leid, C Kioussi. 2012. Detection of apoptosis by TUNEL assay, in Odontogenesis. pp. 41-47. Springer.
- Saraste A, K Pulkki. 2000. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc. Res. 45: 528-537. https://doi.org/10.1016/S0008-6363(99)00384-3
- Marino, G, G Kroemer. 2013. Mechanisms of apoptotic phosphatidylserine exposure. Cell Res. 23: 1247-1248. https://doi.org/10.1038/cr.2013.115
- Crowley LC, BJ Marfell, AP Scott, NJ Waterhouse. 2016. Quantitation of apoptosis and necrosis by annexin V binding, propidium iodide uptake, and flow cytometry. Cold Spring Harb. Protoc. 2016. doi: 10.1101/pdb.prot087288..
- Safayhi H, E-R Sailer. 1997. Anti-inflammatory actions of pentacyclic triterpenes. Planta Med. 63: 487-493. https://doi.org/10.1055/s-2006-957748
- Hernandez-Vazquez, L, J Palazon Barandela, A Navarro-Ocana. 2012. The pentacyclic triterpenes α, β-amyrins: a review of sources and biological activities. Chapter 23 in: Rao, Venketeshwer. Phytochemicals: A Global Perspective of Their Role in Nutrition and Health. IntechOpen. ISBN: 978-953-51-4317-8. DOI: 10.5772/1387 pp. 487-502., 2012.
- Memar MY, R Ghotaslou, M Samiei, K Adibkia. 2018. Antimicrobial use of reactive oxygen therapy: current insights. Infect. Drug Resist. 11: 567-576. https://doi.org/10.2147/IDR.S142397
- Ezraty B, A Gennaris, F Barras, J-F Collet. 2017. Oxidative stress, protein damage and repair in bacteria. Nat. Rev. Microbiol. 15: 385-396. https://doi.org/10.1038/nrmicro.2017.26
- Brookes PS, Y Yoon, JL Robotham, M Anders, S-S Sheu. 2004. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol. Cell Physiol. 287: C817-833. https://doi.org/10.1152/ajpcell.00139.2004
- Sheng H, K Nakamura, T Kanno, K Sasaki, Y Niwano. 2015. Microbicidal activity of artificially generated hydroxyl radicals, pp. 203-215. in Interface Oral Health Science 2014. Springer, Tokyo.
- Masip L, K Veeravalli, G Georgiou. 2006. The many faces of glutathione in bacteria. Antioxid. Redox Signal. 8: 753-762. https://doi.org/10.1089/ars.2006.8.753
- Hong Y, J Zeng, X Wang, K Drlica, X Zhao. 2019. Post-stress bacterial cell death mediated by reactive oxygen species. Proc. Natl. Acad. Sci. USA 116: 10064-10071. https://doi.org/10.1073/pnas.1901730116
- Te Winkel, JD, DA Gray, KH Seistrup, LW Hamoen, H Strahl. 2016. Analysis of antimicrobial-triggered membrane depolarization using voltage sensitive dyes. Front. Cell Dev. Biol. 4: 29.
- Gough NR. 2011. Stressing bacteria to death. Sci. Signal. 4: ec164.
- Asplund-Samuelsson J. 2015. The art of destruction: revealing the proteolytic capacity of bacterial caspase homologs. Mol. Microbiol. 98: 1-6. https://doi.org/10.1111/mmi.13111
- Bayles KW. 2014. Bacterial programmed cell death: making sense of a paradox. Nat. Rev. Microbiol. 12: 63-69. https://doi.org/10.1038/nrmicro3136
- Shlomovitz I, M Speir, M Gerlic. 2019. Flipping the dogma-phosphatidylserine in non-apoptotic cell death. Cell Commun. Signal. 17: 139.