DOI QR코드

DOI QR Code

Fructan Biosynthesis by Yeast Cell Factories

  • Hyunjun Ko (Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Bong Hyun Sung (Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Mi-Jin Kim (Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jung-Hoon Sohn (Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jung-Hoon Bae (Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2022.07.29
  • Accepted : 2022.08.31
  • Published : 2022.11.28

Abstract

Fructan is a polysaccharide composed of fructose and can be classified into several types, such as inulin, levan, and fructo-oligosaccharides, based on their linkage patterns and degree of polymerization. Owing to its structural and functional diversity, fructan has been used in various fields including prebiotics, foods and beverages, cosmetics, and pharmaceutical applications. With increasing interest in fructans, efficient and straightforward production methods have been explored. Since the 1990s, yeast cells have been employed as producers of recombinant enzymes for enzymatic conversion of fructans including fructosyltransferases derived from various microbes and plants. More recently, yeast cell factories are highlighted as efficient workhorses for fructan production by direct fermentation. In this review, recent advances and strategies for fructan biosynthesis by yeast cell factories are discussed.

Keywords

Acknowledgement

This work was supported by the Cooperative Research Program for Agriculture Science and Technology Development (PJ0149382021) through the Rural Development Administration of Korea; (ii) Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HP20C0087); (iii) the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MIST) (2021M3E5E6038113), and the Research Initiative Program of KRIBB (Korea Research Institute of Bioscience and Biotechnology).

References

  1. Ni D, Xu W, Zhu Y, Zhang W, Zhang T, Guang C, Mu W. 2019. Inulin and its enzymatic production by inulosucrase: Characteristics, structural features, molecular modifications and applications. Biotechnol. Adv. 37: 306-318. https://doi.org/10.1016/j.biotechadv.2019.01.002
  2. Srikanth R, Reddy CHS, Siddartha G, Ramaiah MJ, Uppuluri KB. 2015. Review on production, characterization and applications of microbial levan. Carbohydr. Polym. 120: 102-114. https://doi.org/10.1016/j.carbpol.2014.12.003
  3. Oner ET, Hernandez L, Combie J. 2016. Review of levan polysaccharide: from a century of past experiences to future prospects. Biotechnol. Adv. 34: 827-844. https://doi.org/10.1016/j.biotechadv.2016.05.002
  4. Van Laere A, Van Den Ende W. 2002. Inulin metabolism in dicots: chicory as a model system. Plant Cell Environ. 25: 803-813. https://doi.org/10.1046/j.1365-3040.2002.00865.x
  5. Suzuki M, Chatterton NJ. 1993. Science and technology of fructans, pp. 41-82. 1st Ed. CRC Press.
  6. Rose V. 1804. Uber eine eigentumliche vegetabilische Substanz. Gehlen's J. Chem. 3: 217-219.
  7. Thomson T. 1818. A system of chemistry: in four volumes, pp. 65. 1st Ed. Abraham Small.
  8. Greig-Smith R. 1901. The gum fermentation of sugar cane juice, pp. 589-625. 1st Ed.
  9. Baert J, Van Bockstaele E. 1992. Cultivation and breeding of root chicory for inulin production. Ind. Crop. Prod. 1: 229-234. https://doi.org/10.1016/0926-6690(92)90023-O
  10. Kikuchi H, Inoue M, Saito H, Sakurai H, Aritsuka T, Tomita F, Yokota A. 2009. Industrial production of difructose anhydride III (DFA III) from crude inulin extracted from chicory roots using Arthrobacter sp. H65-7 fructosyltransferase. J. Biosci. Bioeng. 107: 262-265. https://doi.org/10.1016/j.jbiosc.2008.11.013
  11. Choukade R, Kango N. 2021. Production, properties, and applications of fructosyltransferase: a current appraisal. Crit. Rev. Biotechnol. 41: 1178-1193. https://doi.org/10.1080/07388551.2021.1922352
  12. Vijn I, Smeekens S. 1999. Fructan: more than a reserve carbohydrate? Plant Physiol. 120: 351-360. https://doi.org/10.1104/pp.120.2.351
  13. Pollock C, Cairns A. 1991. Fructan metabolism in grasses and cereals. Annu. Rev. Plant Biol. 42: 77-101. https://doi.org/10.1146/annurev.pp.42.060191.000453
  14. Chi Z-M, Zhang T, Cao T-S, Liu X-Y, Cui W, Zhao C-H. 2011. Biotechnological potential of inulin for bioprocesses. Bioresour. Technol. 102: 4295-4303. https://doi.org/10.1016/j.biortech.2010.12.086
  15. Gupta AK, Bhatia IS. 1985. Glucofructosan metabolism in Cichorium intybus roots. Phytochemistry 24: 1423-1427. https://doi.org/10.1016/S0031-9422(00)81036-5
  16. Franck A. 2002. Technological functionality of inulin and oligofructose. Br. J. Nutr. 87: S287-S291. https://doi.org/10.1079/BJN/2002550
  17. Johansson E, Prade T, Angelidaki I, Svensson SE, Newson W, Gunnarsson I, et al. 2015. Economically viable components from Jerusalem artichoke (Helianthus tuberosus L.) in a biorefinery concept. Int. J. Mol. Sci. 16: 8997-9016. https://doi.org/10.3390/ijms16048997
  18. Hendry GA, Wallace RK. 1993. The origin, distribution, and evolutionary significance of fructans. Sci. Technol. Fruct. 119-139.
  19. Puebla AF, Salerno GL, Pontis HG. 1997. Fructan metabolism in two species of Bromus subjected to chilling and water stress. New Phytol. 136: 123-129.
  20. Pilon-Smits EA, Ebskamp MJ, Paul MJ, Jeuken MJ, Weisbeek PJ, Smeekens SC. 1995. Improved performance of transgenic fructanaccumulating tobacco under drought stress. Plant Physiol. 107: 125-130. https://doi.org/10.1104/pp.107.1.125
  21. Livingston DP, Hincha DK, Heyer AG. 2009. Fructan and its relationship to abiotic stress tolerance in plants. Cell. Mol. Life Sci. 66: 2007-2023. https://doi.org/10.1007/s00018-009-0002-x
  22. Edelman J, Jefford T. 1968. The mechanisim of fructosan metabolism in higher plants as exemplified in Helianthus tuberosus. New Phytol. 67: 517-531.
  23. Duchateau N, Bortlik K, Simmen U, Wiemken A, Bancal P. 1995. Sucrose: fructan 6-fructosyltransferase, a key enzyme for diverting carbon from sucrose to fructan in barley leaves. Plant Physiol. 107: 1249-1255. https://doi.org/10.1104/pp.107.4.1249
  24. Vijn I, Van Dijken A, Sprenger N, Van Dun K, Weisbeek P, Wiemken A, et al. 1997. Fructan of the inulin neoseries is synthesized in transgenic chicory plants (Cichorium intybus L.) harbouring onion (Allium cepa L.) fructan: fructan 6G-fructosyltransferase. Plant J. 11: 387-398. https://doi.org/10.1046/j.1365-313X.1997.11030387.x
  25. Mehmood A, Abdallah K, Khandekar S, Zhurina D, Srivastava A, Al-Karablieh N, et al. 2015. Expression of extra-cellular levansucrase in Pseudomonas syringae is controlled by the in planta fitness-promoting metabolic repressor HexR. BMC Microbiol. 15: 48.
  26. Dogsa I, Brloznik M, Stopar D, Mandic-Mulec I. 2013. Exopolymer diversity and the role of levan in Bacillus subtilis biofilms. PLoS One 8: e62044.
  27. Kleessen B, Blaut M. 2005. Modulation of gut mucosal biofilms. Br. J. Nutr. 93: S35-S40. https://doi.org/10.1079/BJN20041346
  28. Badel S, Bernardi T, Michaud P. 2011. New perspectives for Lactobacilli exopolysaccharides. Biotechnol. Adv. 29: 54-66. https://doi.org/10.1016/j.biotechadv.2010.08.011
  29. Marsh PD, Bradshaw DJ. 1995. Dental plaque as a biofilm. J. Ind. Microbiol. Biotechnol. 15: 169-175.
  30. Homann A, Biedendieck R, Gotze S, Jahn D, Seibel J. 2007. Insights into polymer versus oligosaccharide synthesis: mutagenesis and mechanistic studies of a novel levansucrase from Bacillus megaterium. Biochem. J. 407: 189-198. https://doi.org/10.1042/BJ20070600
  31. Inthanavong L, Tian F, Khodadadi M, Karboune S. 2013. Properties of Geobacillus stearothermophilus levansucrase as potential biocatalyst for the synthesis of levan and fructooligosaccharides. Biotechnol. Prog. 29: 1405-1415. https://doi.org/10.1002/btpr.1788
  32. Anwar MA, Kralj S, Pique AV, Leemhuis H, van der Maarel MJ, Dijkhuizen L. 2010. Inulin and levan synthesis by probiotic Lactobacillus gasseri strains: characterization of three novel fructansucrase enzymes and their fructan products. Microbiology 156: 1264-1274. https://doi.org/10.1099/mic.0.036616-0
  33. Olvera C, Centeno-Leija S, Lopez-Munguia A. 2007. Structural and functional features of fructansucrases present in Leuconostoc mesenteroides ATCC 8293. Anton. Leeuw. 92: 11-20. https://doi.org/10.1007/s10482-006-9128-0
  34. Moosavi-Nasab M, Layegh B, Aminlari L, Hashemi MB. 2010. Microbial production of levan using date syrup and investigation of its properties. WASET 44: 1248-1254.
  35. Liu J, Luo J, Ye H, Sun Y, Lu Z, Zeng X. 2010. Medium optimization and structural characterization of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr. Polym. 79: 206-213. https://doi.org/10.1016/j.carbpol.2009.07.055
  36. Shih L, Wang TC, Chou SZ, Lee GD. 2011. Sequential production of two biopolymers-levan and poly-ε-lysine by microbial fermentation. Bioresour. Technol. 102: 3966-3969. https://doi.org/10.1016/j.biortech.2010.11.066
  37. Caputi L, Nepogodiev SA, Malnoy M, Rejzek M, Field RA, Benini S. 2013. Biomolecular characterization of the levansucrase of Erwinia amylovora, a promising biocatalyst for the synthesis of fructooligosaccharides. J. Agr. Food Chem. 61: 12265-12273. https://doi.org/10.1021/jf4023178
  38. Jakob F, Pfaff A, Novoa-Carballal R, Rubsam H, Becker T, Vogel RF. 2013. Structural analysis of fructans produced by acetic acid bacteria reveals a relation to hydrocolloid function. Carbohydr. Polym. 92: 1234-1242. https://doi.org/10.1016/j.carbpol.2012.10.054
  39. Kucukasik F, Kazak H, Guney D, Finore I, Poli A, Yenigun O, et al. 2011. Molasses as fermentation substrate for levan production by Halomonas sp. Appl. Microbiol. Biotechnol. 89: 1729-1740. https://doi.org/10.1007/s00253-010-3055-8
  40. Visnapuu T, Mardo K, Mosoarca C, Zamfir AD, Vigants A, Alamae T. 2011. Levansucrases from Pseudomonas syringae pv. tomato and P. chlororaphis subsp. aurantiaca: Substrate specificity, polymerizing properties and usage of different acceptors for fructosylation. J. Biotechnol. 155: 338-349. https://doi.org/10.1016/j.jbiotec.2011.07.026
  41. Kikuchi H, Sakurai H, Nagura T, Aritsuka T, Tomita F, Yokota A. 2010. One-pot conversion of levan prepared from Serratia levanicum NN to difructose anhydride IV by Arthrobacter nicotinovorans levan fructotransferase. J. Biosci. Bioeng. 109: 240-243. https://doi.org/10.1016/j.jbiosc.2009.09.041
  42. Silbir S, Dagbagli S, Yegin S, Baysal T, Goksungur Y. 2014. Levan production by Zymomonas mobilis in batch and continuous fermentation systems. Carbohydr. Polym. 99: 454-461. https://doi.org/10.1016/j.carbpol.2013.08.031
  43. Oh IK, Yoo SH, Bae IY, Cha JH, Lee HG. 2004. Effects of Microbacterium laevaniformans levans molecular weight on cytotoxicity. J. Microbiol. Biotechnol. 14: 985-990.
  44. Ozimek LK, Kralj S, Van der Maarel MJ, Dijkhuizen L. 2006. The levansucrase and inulosucrase enzymes of Lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions. Microbiology 152: 1187-1196. https://doi.org/10.1099/mic.0.28484-0
  45. Van Hijum S, van Geel-Schutten G, Rahaoui H, Van Der Maarel M, Dijkhuizen L. 2002. Characterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides. Appl. Environ. Microbiol. 68: 4390-4398. https://doi.org/10.1128/AEM.68.9.4390-4398.2002
  46. Diez-Municio M, Herrero M, de las Rivas B, Munoz R, Jimeno ML, Moreno FJ. 2016. Synthesis and structural characterization of raffinosyl-oligofructosides upon transfructosylation by Lactobacillus gasseri DSM 20604 inulosucrase. Appl. Microbiol. Biotechnol. 100: 6251-6263. https://doi.org/10.1007/s00253-016-7405-z
  47. Van Hijum S, Van Der Maarel M, Dijkhuizen L. 2003. Kinetic properties of an inulosucrase from Lactobacillus reuteri 121. FEBS Lett. 534: 207-210. https://doi.org/10.1016/S0014-5793(02)03841-3
  48. Ozimek L, Van Hijum S, Van Koningsveld G, Van Der Maarel M, van Geel-Schutten G, Dijkhuizen L. 2004. Site-directed mutagenesis study of the three catalytic residues of the fructosyltransferases of Lactobacillus reuteri 121. FEBS Lett. 560: 131-133. https://doi.org/10.1016/S0014-5793(04)00085-7
  49. Anwar MA, Kralj S, van der Maarel MJ, Dijkhuizen L. 2008. The probiotic Lactobacillus johnsonii NCC 533 produces high-molecular-mass inulin from sucrose by using an inulosucrase enzyme. Appl. Environ. Microbiol. 74: 3426-3433. https://doi.org/10.1128/AEM.00377-08
  50. Rastall R. 2010. Functional oligosaccharides: application and manufacture. Annu. Rev. Food Sci. Technol. 1: 305-339. https://doi.org/10.1146/annurev.food.080708.100746
  51. Han YW. 1990. Microbial levan. Adv. Appl. Microbiol. 35: 171-194. https://doi.org/10.1016/S0065-2164(08)70244-2
  52. van Hijum SA, Kralj S, Ozimek LK, Dijkhuizen L, van Geel-Schutten IG. 2006. Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol. Mol. Biol. Rev. 70: 157-176. https://doi.org/10.1128/MMBR.70.1.157-176.2006
  53. Sicard D, Legras JL. 2011. Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex. CR. Biol. 334: 229-236. https://doi.org/10.1016/j.crvi.2010.12.016
  54. Vieira Gomes AM, Souza Carmo T, Silva Carvalho L, Mendonca Bahia F, Parachin NS. 2018. Comparison of yeasts as hosts for recombinant protein production. Microorganisms 6: 38.
  55. Kim H, Yoo SJ, Kang HA. 2015. Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res. 15: 1-16. https://doi.org/10.1093/femsyr/fou003
  56. de Jong B, Siewers V, Nielsen J. 2012. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels. Curr. Opin. Biotech. 23: 624-630. https://doi.org/10.1016/j.copbio.2011.11.021
  57. Borodina I, Nielsen J. 2014. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol. J. 9: 609-620. https://doi.org/10.1002/biot.201300445
  58. Scotti PA, Chambert R, Petit-Glatron MF. 1994. Extracellular levansucrase of Bacillus subtilis produced in yeast remains in the cell in its precursor form. Yeast 10: 29-38. https://doi.org/10.1002/yea.320100104
  59. Scotti PA, Praestegaard M, Chambert R, Petit-Glatron Mf. 1996. The targeting of bacillus subtilis levansucrase in yeast is correlated to both the hydrophobicity of the signal peptide and the net charge of the N-terminus mature part. Yeast 12: 953-963. https://doi.org/10.1002/(SICI)1097-0061(199608)12:10<953::AID-YEA998>3.0.CO;2-#
  60. Rehm J, Willmitzer L, Heyer AG. 1998. Production of 1-kestose in transgenic yeast expressing a fructosyltransferase from Aspergillus foetidus. J. Bacteriol. 180: 1305-1310. https://doi.org/10.1128/JB.180.5.1305-1310.1998
  61. Bae JH, Sung BH, Kim HJ, Park SH, Lim KM, Kim MJ, et al. 2015. An efficient genome-wide fusion partner screening system for secretion of recombinant proteins in yeast. Sci. Rep. 5: 12229.
  62. Ko H, Bae JH, Sung BH, Kim MJ, Kim CH, Oh BR, Sohn JH. 2019. Efficient production of levan using a recombinant yeast Saccharomyces cerevisiae hypersecreting a bacterial levansucrase. J. Ind. Microbiol. Biotechnol. 46: 1611-1620. https://doi.org/10.1007/s10295-019-02206-1
  63. Ko H, Bae JH, Sung BH, Kim MJ, Park SH, Sohn JH. 2019. Direct production of difructose anhydride iV from sucrose by cofermentation of recombinant yeasts. Sci. Rep. 9: 15980.
  64. Ko H, Bae JH, Sung BH, Kim MJ, Park HJ, Sohn JH. 2019. Microbial production of medium chain fructooligosaccharides by recombinant yeast secreting bacterial inulosucrase. Enzyme Microb. Technol. 109364.
  65. Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A, et al. 2015. Cultivation strategies to enhance productivity of Pichia pastoris: a review. Biotechnol. Adv. 33: 1177-1193. https://doi.org/10.1016/j.biotechadv.2015.05.008
  66. Luscher M, Hochstrasser U, Vogel G, Aeschbacher R, Galati V, Nelson CJ, et al. 2000. Cloning and functional analysis of sucrose: sucrose 1-fructosyltransferase from tall fescue. Plant Physiol. 124: 1217-1228. https://doi.org/10.1104/pp.124.3.1217
  67. Chalmers J, Johnson X, Lidgett A, Spangenberg G. 2003. Isolation and characterisation of a sucrose: sucrose 1-fructosyltransferase gene from perennial ryegrass (Lolium perenne). J. Plant Physiol. 160: 1385-1391. https://doi.org/10.1078/0176-1617-01107
  68. Tamura KI, Kawakami A, Sanada Y, Tase K, Komatsu T, Yoshida M. 2009. Cloning and functional analysis of a fructosyltransferase cDNA for synthesis of highly polymerized levans in timothy (Phleum pratense L.). J. Exp. Bot. 60: 893-905. https://doi.org/10.1093/jxb/ern337
  69. Kawakami A, Yoshida M. 2005. Fructan: fructan 1-fructosyltransferase, a key enzyme for biosynthesis of graminan oligomers in hardened wheat. Planta 223: 90.
  70. Van den Ende W, Van Laere A, Le Roy K, Vergauwen R, Boogaerts D, Figueiredo-Ribeiro RC, Machado de Carvalho MA. 2005. Molecular cloning and characterization of a high DP fructan: fructan 1-fructosyl transferase from Viguiera discolor (Asteraceae) and its heterologous expression in Pichia pastoris. Physiol. Plantarum. 125: 419-429. https://doi.org/10.1111/j.1399-3054.2005.00579.x
  71. Hochstrasser U, Luscher M, De Virgilio C, Boller T, Wiemken A. 1998. Expression of a functional barley sucrose-fructan 6-fructosyltransferase in the methylotrophic yeast Pichia pastoris. FEBS Lett. 440: 356-360. https://doi.org/10.1016/S0014-5793(98)01487-2
  72. Ueno K, Onodera S, Kawakami A, Yoshida M, Shiomi N. 2005. Molecular characterization and expression of a cDNA encoding fructan: fructan 6G-fructosyltransferase from asparagus (Asparagus officinalis). New Phytol. 165: 813-824. https://doi.org/10.1111/j.1469-8137.2004.01294.x
  73. Trujillo L, Arrieta J, Dafhnis F, Garcia J, Valdes J, Tambara Y, et al. 2001. Fructo-oligosaccharides production by the Gluconacetobacter diazotrophicus levansucrase expressed in the methylotrophic yeast Pichia pastoris. Enzyme Microb. Technol. 28: 139-144. https://doi.org/10.1016/S0141-0229(00)00290-8
  74. Trujillo L, Banguela A, Pais J, Tambara Y, Arrieta JG, Sotolongo M, Hernandez L. 2002. Constitutive expression of enzymatically active Gluconacetobacter diazotrophicus levansucrase in the methylothrophic yeast Pichia pastoris. Afinidad. 59: 365-370.
  75. Kang HK, Yun SI, Lim TY, Xia YM, Kim D. 2011. Cloning of levansucrase from Leuconostoc mesenteroides and its expression in Pichia pastoris. Food Sci. Biotechnol. 20: 277-281. https://doi.org/10.1007/s10068-011-0039-0
  76. Guo W, Yang H, Qiang S, Fan Y, Shen W, Chen X. 2016. Overproduction, purification, and property analysis of an extracellular recombinant fructosyltransferase. Eur. Food Res. Technol. 242: 1159-1168. https://doi.org/10.1007/s00217-015-2620-x
  77. Yang H, Wang Y, Zhang L, Shen W. 2016. Heterologous expression and enzymatic characterization of fructosyltransferase from Aspergillus niger in Pichia pastoris. New Biotechnol. 33: 164-170. https://doi.org/10.1016/j.nbt.2015.04.005
  78. Park BS, Vladimir A, Kim CH, Rhee SK, Kang HA. 2004. Secretory production of Zymomonas mobilis levansucrase by the methylotrophic yeast Hansenula polymorpha. Enzyme Microb. Technol. 34: 132-138. https://doi.org/10.1016/j.enzmictec.2003.09.005
  79. Spohner SC, Czermak P. 2016. Heterologous expression of Aspergillus terreus fructosyltransferase in Kluyveromyces lactis. New Biotechnol. 33: 473-479.
  80. Zhang L, An J, Li L, Wang H, Liu D, Li N, et al. 2016. Highly efficient fructooligosaccharides production by an erythritol-producing yeast Yarrowia lipolytica displaying fructosyltransferase. J. Agr. Food Chem. 64: 3828-3837. https://doi.org/10.1021/acs.jafc.6b00115
  81. Hettwer U, Gross M, Rudolph K. 1995. Purification and characterization of an extracellular levansucrase from Pseudomonas syringae pv. phaseolicola. J. Bacteriol. 177: 2834-2839. https://doi.org/10.1128/jb.177.10.2834-2839.1995
  82. Han WC, Byun SH, Kim MH, Sohn EH, Lim JD, Um BH, et al. 2009. Production of lactosucrose from sucrose and lactose by a levansucrase from Zymomonas mobilis. J. Microbiol. Biotechnol. 19: 1153-1160.
  83. Franken J, Brandt BA, Tai SL, Bauer FF. 2013. Biosynthesis of levan, a bacterial extracellular polysaccharide, in the yeast Saccharomyces cerevisiae. PLoS One 8: e77499.
  84. Wu FC, Chou SZ, Shih LJJotTIoCE. 2013. Factors affecting the production and molecular weight of levan of Bacillus subtilis natto in batch and fed-batch culture in fermenter. J. Taiwan Inst. Chem. Eng. 44: 846-853. https://doi.org/10.1016/j.jtice.2013.03.009
  85. Shang H, Yang D, Qiao D, Xu H, Cao Y. 2021. Development and characterization of two types of surface displayed levansucrases for levan biosynthesis. Catalysts 11: 757.