DOI QR코드

DOI QR Code

DsLCYB Directionally Modulated β-Carotene of the Green Alga Dunaliella salina under Red Light Stress

  • Yanhong Lan (Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University) ;
  • Yao Song (Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University) ;
  • Yihan Guo (Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University) ;
  • Dairong Qiao (Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University) ;
  • Yi Cao (Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University) ;
  • Hui Xu (Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University)
  • Received : 2022.08.30
  • Accepted : 2022.10.24
  • Published : 2022.12.28

Abstract

Carotenoids, which are natural pigments found abundantly in wide-ranging species, have diverse functions and high industrial potential. The carotenoid biosynthesis pathway is very complex and has multiple branches, while the accumulation of certain metabolites often affects other metabolites in this pathway. The DsLCYB gene that encodes lycopene cyclase was selected in this study to evaluate β-carotene production and the accumulation of β-carotene in the alga Dunaliella salina. Compared with the wild type, the transgenic algal species overexpressed the DsLCYB gene, resulting in a significant enhancement of the total carotenoid content, with the total amount reaching 8.46 mg/g for an increase of up to 1.26-fold. Interestingly, the production of α-carotene in the transformant was not significantly reduced. This result indicated that the regulation of DsLCYB on the metabolic flux distribution of carotenoid biosynthesis is directional. Moreover, the effects of different light-quality conditions on β-carotene production in D. salina strains were investigated. The results showed that the carotenoid components of β-carotene and β-cryptoxanthin were 1.8-fold and 1.23-fold higher than that in the wild type under red light stress, respectively. This suggests that the accumulation of β-carotene under red light conditions is potentially more profitable.

Keywords

Acknowledgement

This work was supported by National Natural Science Foundation of China (32171473, 32071479, 31670078), Fundamental Research Funds for the Central Universities (No.2018SCUH0072); Sichuan Science and Technology Bureau (2020YFH0076), Chengdu Science and Technology Bureau (2019-YF05-02317-SN, 2020-GH02-00037-HZ)." with "This work was supported by National Natural Science Foundation of China (32171473, 32071479, 32271535, 31670078), Fundamental Research Funds for the Central Universities (No.2018SCUH0072); Sichuan Science and Technology Bureau (2021YJ0024, 2022NSFSC0243, 2022NSFSC0119), Chengdu Science and Technology Bureau (2020-GH02-00037-HZ).

References

  1. Hirschberg J. 2001. Carotenoid biosynthesis in flowering plants. Curr. Opin. Plant Biol. 4: 210-218. https://doi.org/10.1016/S1369-5266(00)00163-1
  2. Fraser PD, Bramley PM. 2004. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43: 228-265. https://doi.org/10.1016/j.plipres.2003.10.002
  3. Takaichi S. 2011. Carotenoids in algae: distributions, biosynthesis, and functions. Mar. Drugs 9: 1101-1118. https://doi.org/10.3390/md9061101
  4. Liu C, Hu B, Cheng Y, Guo Y, Yao W, Qian H. 2021. Carotenoids from fungi and microalgae: a review on their recent production, extraction, and developments. Bioresour. Technol. 337: 125398.
  5. Fiedor J, Burda K. 2014. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6: 466-488. https://doi.org/10.3390/nu6020466
  6. Leo MA, Lieber CS. 1999. Alcohol, vitamin a, and beta-carotene: adverse interactions, including hepatotoxicity and carcinogenicity. Am. J. Clin. Nutr. 69: 1071-1085. https://doi.org/10.1093/ajcn/69.6.1071
  7. Grune T, Lietz G, Palou A, Ross AC, Stahl W, Tang G, et al. 2010. β-carotene is an important vitamin a source for humans. J. Nutr. 140: 2268s-2285s. https://doi.org/10.3945/jn.109.119024
  8. Burri BJ. 2015. Beta-cryptoxanthin as a source of vitamin A. J. Sci. Food Agr. 95: 1786-94. https://doi.org/10.1002/jsfa.6942
  9. Fukushima Y, Taguchi C, Kishimoto Y, Kondo K. 2021. Japanese carotenoid database with α- and β-carotene, β-cryptoxanthin, lutein, zeaxanthin, lycopene, and fucoxanthin and intake in adult women. Int. J. Vitam. Nutr. Res. 7: 1-12.
  10. Eisenhauer B, Natoli S, Liew G, Flood VM. 2017. Lutein and zeaxanthin-food sources, bioavailability and dietary variety in age-related macular degeneration protection. Nutrients 9: 120.
  11. Demmig-Adams B, Lopez-Pozo M, Stewart JJ, Adams WW 3rd. 2020. Zeaxanthin and lutein: Photoprotectors, anti-inflammatories, and brain food. Molecules 25: 3607.
  12. Cuttriss AJ, Chubb AC, Alawady A, Grimm B, Pogson BJ. 2007. Regulation of lutein biosynthesis and prolamellar body formation in arabidopsis. Funct. Plant Biol. 34: 663-672. https://doi.org/10.1071/FP07034
  13. Cazzonelli CI, Cuttriss AJ, Cossetto SB, Pye W, Crisp P, Whelan J, et al. 2009. Regulation of carotenoid composition and shoot branching in arabidopsis by a chromatin modifying histone methyltransferase, sdg8. Plant Cell 21: 39-53. https://doi.org/10.1105/tpc.108.063131
  14. Kang C, Zhai H, Xue L, Zhao N, He S, Liu Q. 2018. A lycopene β-cyclase gene, iblcyb2, enhances carotenoid contents and abiotic stress tolerance in transgenic sweet potato. Plant Sci. 272: 243-254. https://doi.org/10.1016/j.plantsci.2018.05.005
  15. Moreno JC, Cerda A, Simpson K, Lopez-Diaz I, Carrera E, Handford M, et al. 2016. Increased nicotiana tabacum fitness through positive regulation of carotenoid, gibberellin and chlorophyll pathways promoted by Daucus carota lycopene-cyclase (dclcyb1) expression. J. Exp. Bot. 67: 2325-2338. https://doi.org/10.1093/jxb/erw037
  16. Song X, Zhu WJ, Tang RM, Cai J, Yang Q. 2016. Over-expression of stlcyb increases β-carotene accumulation in potato tubers. Plant Biotechnol. Rep. 10: 95-104.
  17. Liang MH, Lu Y, Chen HH, Jiang JG. 2017. The salt-regulated element in the promoter of lycopene β-cyclase gene confers a salt regulatory pattern in carotenogenesis of Dunaliella bardawil. Environ. Microbiol. 19: 982-989. https://doi.org/10.1111/1462-2920.13539
  18. Lamers PP, Janssen M, De Vos RC, Bino RJ, Wijffels RH. 2012. Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green mi-croalga. J. Biotechol. 162: 21-27. https://doi.org/10.1016/j.jbiotec.2012.04.018
  19. Fazeli MR, Tofighi H, Samadi N, Jamalifar H. 2007. Effects of salinity on beta-carotene production by Dunaliella tertiolecta dccbc26 isolated from the urmia salt lake, north of Iran. Bioresour. Technol. 97: 2453-2456.
  20. Borowitzka MA, Borowitzka LJ, Kessly D. 1990. Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. J. Appl. Phycol. 2: 111-119. https://doi.org/10.1007/BF00023372
  21. Llorente B, Martinez-Garcia JF, Stange C, Rodriguez-Concepcion M. 2017. Illu-minating colors: regulation of carotenoid biosynthesis and accumulation by light. Curr. Opin. Plant Biol. 37: 49-55. https://doi.org/10.1016/j.pbi.2017.03.011
  22. Qian L, Kubota C. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 67: 59-64. https://doi.org/10.1016/j.envexpbot.2009.06.011
  23. Johkan M, Shoji K, Goto F, Hashida SN, Yoshihara T. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. Hortscience 45: 414-415. https://doi.org/10.21273/HORTSCI.45.3.414
  24. Huang X, Hu L, Kong W, Yang C, Xi W. 2022. Red light-transmittance bagging promotes carotenoid accumulation of grapefruit during ripening. Commun. Biol. 5: 303.
  25. Chen Y, Zhou B, Li J, Tang H, Zeng L, Chen Q, et al. 2021. Effects of long-term non-pruning on main quality constituents in 'Dancong' tea (Camellia sinensis) leaves based on proteomics and metabolomics analysis. Foods 10: 2649.
  26. Tang Z, Cao X, Zhang Y, Jiang J, Qiao D, Xu H, et al. 2020. Two splice variants of the dsmek1 mitogen-activated protein kinase kinase (mapkk) are involved in salt stress regulation in Dunaliella salina in different ways. Biotechnol. Biofuels 13: 147.
  27. Priyanka S, Kirubagaran R, Leema J. 2020. Optimization of algal culture medium for zeaxanthin production by Dunaliella tertiolecta: an rsm based approach. Curr. Sci. 119. DOI: 10.18520/cs/v119/i12/1997-2005.
  28. Goyal A. 2007. Osmoregulation in Dunaliella, Part II: Photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta. Plant Physiol. Biochem. 45: 705-710. https://doi.org/10.1016/j.plaphy.2007.05.009
  29. Rio DC, Ares M Jr, Hannon GJ, Nilsen TW. 2010. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protocol. 2010: pdb.prot5439.
  30. Kumar S, Stecher G, Tamura K. 2015. Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  31. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. 2009. Meme suite: tools for motif discovery and searching. Nucleic Acids 37(Web Server issue): W202-208. https://doi.org/10.1093/nar/gkp335
  32. Norzagaray-Valenzuela CD, German-Baez LJ, Valdez-Flores MA, Hernandez-Verdugo S, Shelton LM, Valdez-Ortiz A. 2018. Establishment of an efficient genetic transformation method in Dunaliella tertiolecta mediated by agrobacterium tumefaciens. J. Microbiol. Methods 150: 9-17. https://doi.org/10.1016/j.mimet.2018.05.010
  33. Mechela A, Schwenkert S, Soll J. 2019. A brief history of thylakoid biogenesis. Open Biol. 9: 180237.
  34. Porra RJ, Thompson WA, Kriedemann PE. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy-sciencedirect. BBA-Bioenerg. 975: 384-394. https://doi.org/10.1016/S0005-2728(89)80347-0
  35. Irakli MN, Samanidou VF, Papadoyannis IN. 2011. Development and validation of an HPLC method for the simultaneous determination of tocopherols, tocotrienols and carotenoids in cere-als after solid-phase extraction. J. Anim. Feed Sci. 34: 1375-1382.
  36. Melendez-Martinez AJ, Escudero-Gilete ML, Vicario IM, Heredia FJ. 2010. Study of the influence of carotenoid structure and individual carotenoids in the qualitative and quantitative attributes of orange juice colour. Food Res. Int. 43: 1289-1296. https://doi.org/10.1016/j.foodres.2010.03.012
  37. Rasmussen HM, Muzhingi T, Eggert EMR, Johnson EJ. 2012. Lutein, zeaxanthin, meso-zeaxanthin content in egg yolk and their absence in fish and seafood. J. Food Compos. Anal. 27: 139-144. https://doi.org/10.1016/j.jfca.2012.04.009
  38. Vardi N, Parlakpinar H, Ozturk F, Ates B, Gul M, Cetin A. 2008. Potent protective effect of apricot and -carotene on methotrexate-induced intestinal oxidative damage in rats. Food Chem. Toxicol. 46: 3015-3022. https://doi.org/10.1016/j.fct.2008.05.039
  39. Vardi N, Parlakpinar H, Ates B. 2013. The protective effects of prunus arme-niaca l (apricot) against methotrexate-induced oxidative damage and apoptosis in rat kidney. J. Physiol. Biochem. 69: 371-381. https://doi.org/10.1007/s13105-012-0219-2
  40. Cazzonelli CI, Cuttriss AJ, Cossetto SB, Pye W, Crisp P, Whelan J, et al. 2009. Regulation of carotenoid composition and shoot branching in arabidopsis by a chromatin modifying histone methyltransferase, sdg8. Plant Cell. 21: 39-53. https://doi.org/10.1105/tpc.108.063131
  41. Bohne F, Linden H. 2002. Regulation of carotenoid biosynthesis genes in response to light in Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1579: 26-34. https://doi.org/10.1016/S0167-4781(02)00500-6
  42. Zeng J, Wang C, Chen X, Zang M, Yuan C, Wang X, et al. 2015. The lycopene β-cyclase plays a significant role in provitamin a biosynthesis in wheat endosperm. BMC Plant Biol. 15: 112.
  43. Chen X, Han H, Jiang P, Nie L, Bao H, Fan P, et al. 2011. Transformation of b-lycopene cyclase genes from Salicornia europaea and arabidopsis conferred salt tolerance in ara-bidopsis and tobacco. Plant Cell Physiol. 52: 909-921. https://doi.org/10.1093/pcp/pcr043
  44. Tokunaga S, Morimoto D, Koyama T, Kubo Y, Shiroi M, Ohara K, et al. 2021. Enhanced lutein production in chlamydomonas reinhardtii by overexpression of the lycopene ep-silon cyclase gene. Appl. Biochem. Biotechnol. 193: 1967-1978. https://doi.org/10.1007/s12010-021-03524-w
  45. Ryu JY, Song JY, Chung Y, Park YM, Chow WS, Park YI. 2010. Transcript accumulation of carotenoid biosynthesis genes in the cyanobacterium Synechocystis sp. PCC 6803 during the dark-to-light transition is mediated by photosynthetic electron transport. Plant Biotechnol. Rep. 4: 149-155. https://doi.org/10.1007/s11816-010-0130-7
  46. Busch M, Seuter A, Hain R. 2002. Functional analysis of the early steps of carotenoid biosynthesis in tobacco. Plant Physiol. 128: 439-453. https://doi.org/10.1104/pp.010573