DOI QR코드

DOI QR Code

Comparative antiplatelet and antithrombotic effects of red ginseng and fermented red ginseng extracts

  • Irfan, Muhammad (Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University) ;
  • Lee, Yuan Yee (Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University) ;
  • Lee, Ki-Ja (Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University) ;
  • Kim, Sung Dae (Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University) ;
  • Rhee, Man Hee (Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University)
  • Received : 2021.01.19
  • Accepted : 2021.05.30
  • Published : 2022.05.01

Abstract

Background: Fermentation may alter the bioavailability of certain compounds, which may affect their efficacy and pharmacological responses. This study investigated the antiplatelet effects of red ginseng extract (RGE) and fermented red ginseng extract (FRG). Methods: A rodent model was used to evaluate the antiplatelet and antithrombotic effects of the extracts. Rats were orally fed with human equivalent doses of the extracts for 1 week and examined for various signaling pathways using standard in vivo and ex vivo techniques. Light transmission aggregometry was performed, and calcium mobilization, dense granule secretion, integrin αIIbβ3-mediated signaling molecules, cyclic nucleotide signaling events, and various protein molecules were evaluated ex vivo in collagen-stimulated washed platelets. Furthermore, antithrombotic properties were evaluated using a standard acute pulmonary thromboembolism model, and the effects on hemostasis were investigated using rat and mice models. Results: Both RGE and FRG significantly inhibited platelet aggregation, calcium mobilization, and dense granule secretion along with integrin-mediated fibrinogen binding and fibrinogen adhesion. cAMP levels were found to be elevated in RGE-treated rat platelets. Ginseng extracts did not exert any effect on prothrombin time and activated partial thromboplastin time. RGE-treated mice showed significantly better survival under thrombosis than FRG-treated mice, with no effects on hemostasis, whereas FRG-treated mice exhibited a slight increment in bleeding time. Conclusion: Both extracts, especially RGE, are remarkable supplements to maintain cardiovascular health and are potential candidates for the treatment and prevention of platelet-related cardiovascular disorders.

Keywords

Acknowledgement

The project was funded by the Korean Society of Ginseng (2020).

References

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, De Ferranti S, Despres J-P, Fullerton HJ. Executive summary: heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 2016;133(4):447-54. https://doi.org/10.1161/CIR.0000000000000366
  2. Shafiq G, Tatinati S, Ang WT, Veluvolu KC. Automatic identification of systolic time intervals in seismocardiogram. Sci Rep 2016;6:37524. https://doi.org/10.1038/srep37524
  3. Pagidipati NJ, Gaziano TA. Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation 2013;127(6):749-56. https://doi.org/10.1161/CIRCULATIONAHA.112.128413
  4. Andrews RK, Berndt MC. Platelet physiology and thrombosis. Thromb Res 2004;114(5-6):447-53. https://doi.org/10.1016/j.thromres.2004.07.020
  5. Shin J-H, Kwon H-W, Rhee MH, Park H-J. Inhibitory effects of thromboxane A2 generation by ginsenoside Ro due to attenuation of cytosolic phospholipase A2 phosphorylation and arachidonic acid release. J Ginseng Res 2019;43(2):236-41. https://doi.org/10.1016/j.jgr.2017.12.007
  6. Barrett NE, Holbrook L, Jones S, Kaiser WJ, Moraes LA, Rana R, Sage T, Stanley RG, Tucker KL, Wright B, et al. Future innovations in anti-platelet therapies. Br J Pharmacol 2008;154(5):918-39. https://doi.org/10.1038/bjp.2008.151
  7. Wang TH, Bhatt DL, Topol EJ. Aspirin and clopidogrel resistance: an emerging clinical entity. Eur Heart J 2006;27(6):647-54. https://doi.org/10.1093/eurheartj/ehi684
  8. Ferguson AD, Dokainish H, Lakkis N. Aspirin and clopidogrel response variability: review of the published literature. Tex Heart I J 2008;35(3):313.
  9. Badimon L, Vilahur G, Padro T. Nutraceuticals and atherosclerosis: human trials. Cardiovasc Ther 2010;28(4):202-15. https://doi.org/10.1111/j.1755-5922.2010.00189.x
  10. Vilahur G, Badimon L. Antiplatelet properties of natural products. Vasc Pharmacol 2013;59(3):67-75. https://doi.org/10.1016/j.vph.2013.08.002
  11. Kim J-H. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res 2018;42(3):264-9. https://doi.org/10.1016/j.jgr.2017.10.004
  12. Irfan M, Kim M, Rhee MH. Anti-platelet role of Korean ginseng and ginsenosides in cardiovascular diseases. J Ginseng Res 2020;44(1):24-32. https://doi.org/10.1016/j.jgr.2019.05.005
  13. Saba E, Lee YY, Kim M, Kim S-H, Hong S-B, Rhee MH. A comparative study on immune-stimulatory and antioxidant activities of various types of ginseng extracts in murine and rodent models. J Ginseng Res 2018;42(4):577-84. https://doi.org/10.1016/j.jgr.2018.07.004
  14. Irfan M, Jeong D, Kwon H-W, Shin J-H, Park S-J, Kwak D, Kim T-H, Lee D-H, Park H-J, Rhee MH. Ginsenoside-Rp3 inhibits platelet activation and thrombus formation by regulating MAPK and cyclic nucleotide signaling. Vasc Pharmacol 2018;109:45-55. https://doi.org/10.1016/j.vph.2018.06.002
  15. Canobbio I, Cipolla L, Consonni A, Momi S, Guidetti G, Oliviero B, Falasca M, Okigaki M, Balduini C, Gresele P, et al. Impaired thrombin-induced platelet activation and thrombus formation in mice lacking the Ca(2+)-dependent tyrosine kinase Pyk2. Blood 2013;121(4):648-57. https://doi.org/10.1182/blood-2012-06-438762
  16. Endale M, Lee W, Kamruzzaman S, Kim S, Park J, Park M, Park T, Park H, Cho J, Rhee M. Ginsenoside-Rp1 inhibits platelet activation and thrombus formation via impaired glycoprotein VI signalling pathway, tyrosine phosphorylation and MAPK activation. Br J Pharmacol 2012;167(1):109-27. https://doi.org/10.1111/j.1476-5381.2012.01967.x
  17. Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med 2007;357(24):2482-94. https://doi.org/10.1056/NEJMra071014
  18. Varga-Szabo D, Braun A, Nieswandt B. Calcium signaling in platelets. J Thromb Haemost 2009;7(7):1057-66. https://doi.org/10.1111/j.1538-7836.2009.03455.x
  19. Senis YA, Mazharian A, Mori J. Src family kinases: at the forefront of platelet activation. Blood 2014;124(13):2013-24. https://doi.org/10.1182/blood-2014-01-453134
  20. Shattil SJ, Newman PJ. Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood 2004;104(6):1606-15. https://doi.org/10.1182/blood-2004-04-1257
  21. Lucotti S, Cerutti C, Soyer M, Gil-Bernabe AM, Gomes AL, Allen PD, Smart S, Markelc B, Watson K, Armstrong PC. Aspirin blocks formation of metastatic intravascular niches by inhibiting platelet-derived COX-1/thromboxane A 2. J Clin Invest 2019;129(5):1845-62. https://doi.org/10.1172/jci121985
  22. Adam F, Kauskot A, Rosa JP, Bryckaert M. Mitogen-activated protein kinases in hemostasis and thrombosis. J Thromb Haemost 2008;6(12):2007-16. https://doi.org/10.1111/j.1538-7836.2008.03169.x
  23. Suzuki-Inoue K, Hughes CE, Inoue O, Kaneko M, Cuyun-Lira O, Takafuta T, Watson SP, Ozaki Y. Involvement of Src kinases and PLCγ2 in clot retraction. Thromb Res 2007;120(2):251-8. https://doi.org/10.1016/j.thromres.2006.09.003
  24. Poppe H, Rybalkin SD, Rehmann H, Hinds TR, Tang X-B, Christensen AE, Schwede F, Genieser H-G, Bos JL, Doskeland SO. Cyclic nucleotide analogs as probes of signaling pathways. Nat Methods 2008;5(4):277-8. https://doi.org/10.1038/nmeth0408-277
  25. Oh WJ, Endale M, Park S-C, Cho JY, Rhee MH. Dual roles of quercetin in platelets: phosphoinositide-3-kinase and MAP kinases inhibition, and cAMP-dependent vasodilator-stimulated phosphoprotein stimulation. Evid-Based Complementary Altern Med. 2012;2012:485262. https://doi.org/10.1155/2012/485262.
  26. Miao R, Liu J, Wang J. Overview of mouse pulmonary embolism models. Drug Discov Today Dis Models 2010;7(3-4):77-82. https://doi.org/10.1016/j.ddmod.2011.03.006
  27. Huang J, Wang S, Luo X, Xie Y, Shi X. Cinnamaldehyde reduction of platelet aggregation and thrombosis in rodents. Thromb Res 2007;119(3):337-42. https://doi.org/10.1016/j.thromres.2006.03.001
  28. Konstantinides S, Schafer K, Neels JG, Dellas C, Loskutoff DJ. Inhibition of endogenous leptin protects mice from arterial and venous thrombosis. Arterioscler Thromb Vasc Biol 2004;24(11):2196-201. https://doi.org/10.1161/01.ATV.0000146531.79402.9a
  29. Irfan M, Kwon T-H, Yun B-S, Park N-H, Rhee MH. Eisenia bicyclis (brown alga) modulates platelet function and inhibits thrombus formation via impaired P2Y12 receptor signaling pathway. Phytomedicine 2018;40:79-87. https://doi.org/10.1016/j.phymed.2018.01.003
  30. Kerver JM, Yang EJ, Bianchi L, Song WO. Dietary patterns associated with risk factors for cardiovascular disease in healthy US adults. Am J Clin Nutr 2003;78(6):1103-10. https://doi.org/10.1093/ajcn/78.6.1103
  31. Irfan M, Kim M, Kim K-S, Kim T-H, Kim S-D, Hong S-B, et al. Fermented garlic ameliorates hypercholesterolemia and inhibits platelet activation. Evid-Based Complementary Altern Med. 2019;2019:3030967. https://doi.org/10.1155/2015/764906.
  32. Calderwood DA. Integrin activation. J Cell Sci 2004;117(Pt 5):657-66. https://doi.org/10.1242/jcs.01014
  33. Kwon H-W. 20 (S)-ginsenoside Rg3 inhibits glycoprotein IIb/IIIa activation in human platelets. J Appl Biol Chem 2018;61(3):257-65. https://doi.org/10.3839/jabc.2018.037
  34. Kwon H-W, Shin J-H, Cho H-J, Rhee MH, Park H-J. Total saponin from Korean Red Ginseng inhibits binding of adhesive proteins to glycoprotein IIb/IIIa via phosphorylation of VASP (Ser157) and dephosphorylation of PI3K and Akt. J Ginseng Res 2016;40(1):76-85. https://doi.org/10.1016/j.jgr.2015.05.004
  35. Jeong D, Irfan M, Kim S-D, Kim S, Oh J-H, Park C-K, Kim H-K, Rhee MH. Ginsenoside Rg3-enriched red ginseng extract inhibits platelet activation and in vivo thrombus formation. J Ginseng Res 2017;41(4):548-55. https://doi.org/10.1016/j.jgr.2016.11.003
  36. Shin J-H, Kwon H-W, Cho H-J, Rhee MH, Park H-J. Inhibitory effects of [Ca+2]i mobilization by total saponin from Korean red ginseng via phosphorylation of PKA catalytic subunit and IP3RI in human platelets. J Ginseng Res 2015;39(4):354-64. https://doi.org/10.1016/j.jgr.2015.03.006
  37. Kwon H-W, Shin J-H, Lee D-H, Park H-J. Inhibitory effects of cytosolic Ca2+ concentration by ginsenoside Ro are dependent on phosphorylation of IP3RI and dephosphorylation of ERK in human platelets. Evid-Based Complementary Altern Med. 2015;2015:764906. https://doi.org/10.1155/2015/764906.
  38. Shin J-H, Kwon H-W, Lee D-H. Ginsenoside F4 inhibits platelet aggregation and thrombus formation by dephosphorylation of IP 3 RI and VASP. J Appl Biol Chem 2019;62(1):93-100. https://doi.org/10.3839/jabc.2019.014