DOI QR코드

DOI QR Code

Rotational inertial double tuned mass damper for human-induced floor vibration control

  • Wang, Pengcheng (Department of Structural Engineering, Tongji University) ;
  • Chen, Jun (Department of Structural Engineering, Tongji University) ;
  • Han, Ziping (National Maglev Transportation Engineering R&D Center, Tongji University)
  • Received : 2021.05.07
  • Accepted : 2022.02.04
  • Published : 2022.05.10

Abstract

An inerter is a passive mechanical element whose inertance can be thousands of times its own physical mass. This paper discusses the application of an inerter-based passive control system, termed rotational inertial double-tuned mass damper (RIDTMD), to mitigate human-induced floor vibrations. First, the acceleration frequency response function of the floor with an RIDTMD is first derived. It is then employed to determine the optimal design parameters of the RIDTMD using the extended fixed-points technique. Based on a theoretical analysis, design-oriented empirical functions are proposed for the RIDTMD optimal parameters, whose performance for floor vibration control is evaluated by numerical examples, in which three typical human-induced load types are considered: walking, jumping, and bouncing. The results indicate that the applicability and effectiveness of the RIDTMD for human-induced floor vibration control are robust for various load types, load frequencies, and floor natural frequencies. For the same mass ratio, the RIDTMD is better than the TMD in reducing the floor vibration amplitude and improving the effective frequency suppression bandwidth, and for the same vibration suppression effect, the mass of the RIDTMD is much lighter than that of the TMD.

Keywords

Acknowledgement

The authors would like to acknowledge the financial support provided by National Natural Science Foundation of China (52178151), and the State Key Laboratory for Disaster Reduction of Civil Engineering (SLDRCE19-B-22).

References

  1. Bachmann, H. (1992), "Case studies of structures with man-induced vibrations", J. Struct. Eng., 118(3), 631-647. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:3(631).
  2. Baduidana, M. and Kenfack-Jiotsa A. (2021), "Optimal design of inerter-based isolators minimizing the compliance and mobility transfer function versus harmonic and random ground acceleration excitation", J. Vib. Control, 27(11-12), 1297-1310. https://doi.org/10.1177/1077546320940175.
  3. Barredo, E., Blanco, A., Colin, J., Penagos, V.M., Abundez, A., Vela, L.G. and Mayen, J. (2018), "Closed-form solutions for the optimal design of inerter-based dynamic vibration absorbers", Int. J. Mech. Sci., 144, 41-53. https://doi.org/10.1016/j.ijmecsci.2018.05.025.
  4. Barredo, E., Larios, J.G.M., Colin, J., Mayen, J., Flores-Hernandez, A.A. and Arias-Montiel, M. (2020), "A novel high-performance passive non-traditional inerter-based dynamic vibration absorber", J. Sound Vib., 485, 115583. https://doi.org/10.1016/j.jsv.2020.115583.
  5. Cao, L., Li, C. and Chen, X. (2020), "Performance of multiple tuned mass dampers-inerters for structures under harmonic ground acceleration", Smart Struct. Syst., 26(1), 49-61. https://doi.org/10.12989/sss.2020.26.1.049.
  6. Carmona, J.E.C., Avila, S.M. and Doz, G. (2017), "Proposal of a tuned mass damper with friction damping to control excessive floor vibrations", Eng. Struct., 148, 81-100. https://doi.org/10.1016/j.engstruct.2017.06.022.
  7. Chen, H., Jia, S. and He, X. (2019), "Dynamic characteristics of multiple inerter-based dampers for suppressing harmonically forced oscillations", Struct. Eng. Mech., 72(6), 747-762. https://doi.org/10.12989/sem.2019.72.6.747.
  8. Chen, J. Wang, H. and Wang, L. (2015), "Experimental investigation on single person's jumping load model", Earthq. Eng. Eng. Vib., 14(4), 703-714. https://doi.org/10.1007/s11803-015-0055-9.
  9. Chen, J., Han, Z. and Xu, R. (2019), "Effects of human-induced load models on tuned mass damper in reducing floor vibration", Adv. Struct. Eng., 22(11), 2449-2463. https://doi.org/10.1177/1369433219843709.
  10. Chen, J., Jiang, S.Y., Wang, L., Peng, Y.X. and Cheng, Y.W. (2011), "Experiments on human-induced excitation using 3D motion capture and analysis", Proc. Third Asia-Pacific Young Researchers and Graduates Symposium, Taipei, March.
  11. Chen, Q., Zhao, Z., Xia, Y., Pan, C., Luo, H. and Zhang R. (2019), "Comfort based floor design employing tuned inerter mass system", J. Sound Vib., 458, 143-157. https://doi.org/10.1016/j.jsv.2019.06.019.
  12. Dallard, P., Fitzpatrick, T., Low, A., Ridsill Smith, R. and Flint, A. (2001), "The Millennium Bridge, London: Problems and solutions", Struct. Eng., 79(8), 7-15.
  13. de Brito, V.L. and Pimentel, R.L. (2009), "Cases of collapse of demountable grandstands", J. Perform. Constr. Facil., 23(3), 151-159. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000006.
  14. Den Hartog, J.P. (1985), Mechanical Vibrations, Courier Corporation.
  15. Diaz, I.M., Pereira, E., Hudson, M.J. and Reynolds, P. (2012), "Enhancing active vibration control of pedestrian structures using inertial actuators with local feedback control", Eng. Struct., 41, 157-166. https://doi.org/10.1016/j.engstruct.2012.03.043.
  16. Elias, S. and Matsagar, V. (2017), "Research developments in vibration control of structures using passive tuned mass dampers", Ann. Rev. Control, 44, 129-156. https://doi.org/10.1016/j.arcontrol.2017.09.015.
  17. Garrido, H., Curadelli, O. and Ambrosini, D. (2013), "Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper", Eng. Struct., 56, 2149-2153. https://doi.org/10.1016/j.engstruct.2013.08.044.
  18. Hanagan, L.M. (1994), "Active control of floor vibrations", Ph.D. Dissertation, Polytechnic Institute and State University, Virginia, USA.
  19. Housner, G., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., ... & Yao, J.T. (1997), "Structural control: Past, present, and future", J. Eng. Mech., 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897).
  20. Hu, Y. and Chen, M.Z. (2015), "Performance evaluation for inerter-based dynamic vibration absorbers", Int. J. Mech. Sci., 99, 297-307. https://doi.org/10.1016/j.ijmecsci.2015.06.003.
  21. Hu, Y., Chen, M.Z., Shu, Z. and Huang, L. (2015), "Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution", J. Sound Vib., 346, 17-36. https://doi.org/10.1016/j.jsv.2015.02.041.
  22. Hudson, M. and Reynolds, P. (2012), "Implementation considerations for active vibration control in the design of floor structures", Eng. Struct., 44, 334-358. https://doi.org/10.1016/j.engstruct.2012.05.034.
  23. Hwang, J.S., Kim, J. and Kim, Y.M. (2007), "Rotational inertia dampers with toggle bracing for vibration control of a building structure", Eng. Struct., 29(6), 1201-1208. https://doi.org/10.1016/j.engstruct.2006.08.005.
  24. Ikago, K., Saito, K. and Inoue, N. (2012), "Seismic control of single-degree-of-freedom structure using tuned viscous mass damper", Earthq. Eng. Struct. D., 41(3), 53-74. https://doi.org/10.1002/eqe.1138.
  25. Javidialesaadi, A. and Wierschem, N.E. (2018), "Three-element vibration absorber-inerter for passive control of single-degree-of-freedom structures", J. Vib. Acoust., 40(6), 61007. https://doi.org/10.1115/1.4040045.
  26. Jiang, G. and Hanagan, L.M. (2006), "Semi-active TMD with piezoelectric friction dampers in floor vibration control", Smart Structures and Materials 2006: Damping and Isolation, 6169, 616915. https://doi.org/10.1117/12.657754.
  27. Kaveh, A., Fahimi Farzam, M. and Hojat Jalali, H. (2020), "Statistical seismic performance assessment of tuned mass damper inerter", Struct. Control Hlth., 7(10), 2602. https://doi.org/10.1002/stc.2602.
  28. Khot, N.S., Venkayya, V.B. and Eastep, F.E. (1986), "Optimal Structural modifications to enhance the active vibration control of flexible structures", AIAA J., 24(8), 368-374. https://doi.org/10.2514/3.9445.
  29. Lazar, I.F., Neild, S.A. and Wagg, D.J. (2014), "Using an inerter-based device for structural vibration suppression", Earthq. Eng. Struct. D., 43(8), 129-147. https://doi.org/10.1002/eqe.2390.
  30. Lee, S.H., Lee, K,K., Woo, S.S. and Cho, S.H. (2013), "Global vertical mode vibrations due to human group rhythmic movement in a 39 story building structure", Eng. Struct., 57, 296-305. https://doi.org/10.1016/j.engstruct.2013.09.035.
  31. Li, C. and Cao, L. (2019), "High performance active tuned mass damper inerter for structures under the ground acceleration", Earthq. Struct., 16(2), 149-163. https://doi.org/10.12989/eas.2019.16.2.149.
  32. Lu, X., Ding, K., Shi, W. and Weng, D. (2012), "Tuned mass dampers for human-induced vibration control of the Expo Culture Centre at the World Expo 2010 in Shanghai, China", Struct. Eng. Mech., 43(5), 607-621. https://doi.org/10.12989/sem.2012.43.5.607.
  33. Ma, R., Bi, K. and Hao, H. (2021), "Inerter-based structural vibration control: A state-of-the-art review", Eng. Struct., 243, 112655. https://doi.org/10.1016/j.engstruct.2021.112655.
  34. Marian, L. and Giaralis, A. (2014), "Optimal Design of a Novel Tuned Mass-Damper-Inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems", Prob. Eng. Mech., 38, 156-164. https://doi.org/10.1016/j.probengmech.2014.03.007.
  35. Nyawako, D.S. (2009), "An active control approach for mitigation of human-induced vibrations in floors", Ph.D. Dissertation, University of Sheffield, UK.
  36. Ormondroyd, J. and Hartog, J.P. (1928), "The theory of dynamic vibration absorber", Tran. ASME, 50, 9-22.
  37. Papageorgiou, C., Houghton, N.E. and Smith, M.C. (2009) "Experimental testing and analysis of inerter devices", J. Dyn. Syst., Measure. Control, 131(1), 101-116. https://doi.org/10.1115/1.3023120.
  38. Setareh, M. (2002), "Floor vibration control using semi-Active tuned mass dampers", Can. J. Civil Eng., 29(1), 76-84. https://doi.org/10.1139/l01-063.
  39. Setareh, M. and Hanson, R.D. (1992), "Tuned mass dampers to control floor vibration from humans", J Struct. Eng., 118(3), 741-762. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:3(741).
  40. Setareh, M., Ritchey, J.K., Baxter, A.J. and Murray, T.M. (2006), "Pendulum tuned mass dampers for floor vibration control", J. Perform. Constr. Facil., 20(1), 64-73. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:1(64).
  41. Setareh, M., Ritchey, J.K., Murray, T.M., Koo, J.H. and Ahmadian, M. (2007), "Semiactive tuned mass damper for floor vibration control", J. Struct. Eng., 133(2), 242-250. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:2(242).
  42. Smith, A.L., Hicks, S.J. and Devine, P.J. (2007), Design of Floors for Vibration: A New Approach, Steel Construction Institute Ascot, Berkshire, UK.
  43. Smith, M.C. (2002), "Synthesis of mechanical networks: The inerter", IEEE T. Autom. Control, 47(10), 1648-1662. https://doi.org/10.1109/TAC.2002.803532.
  44. Song, J., Bi, K.M, Xu, K., Han, Q. and Du, X. (2021), "Seismic responses of adjacent bridge structures coupled by tuned inerter damper", Eng. Struct., 243: 112654. https://doi.org/10.1016/j.engstruct.2021.112654.
  45. Sun, H., Zuo, L., Wang, X., Peng, J. and Wang, W. (2019), "Exact H2 optimal solutions to inerter-based isolation systems for building structures", Struct. Control Hlth., 26(6), e2357. https://doi.org/10.1002/stc.2357.
  46. Symans, M.D. and Constantinou, M.C. (1999), "Semi-active control systems for seismic protection of structures: A state-of-the-art review", Eng. Struct., 21(6), 469-487. https://doi.org/10.1016/S0141-0296(97)00225-3.
  47. Taflanidis, A.A., Giaralis, A. and Patsialis, D. (2019), "Multiobjective optimal design of inerter-based vibration absorbers for earthquake protection of multi-storey building structures", J. Franklin Inst., 356(14), 7754-7784. https://doi.org/10.1016/j.jfranklin.2019.02.022.
  48. Wang, F.C., Hong, M.F. and Chen, C.W. (2010), "Building suspensions with inerters", Proc. IME. C. J. Mech. Eng. Sci., 224(8), 1605-1616. https://doi.org/10.1243/09544062JMES1909.
  49. Wang, F.C., Hong, M.F. and Lin, T.C. (2011), "Designing and testing a hydraulic inerter", Proc. Inst. Mech. Eng., Part C: J Mech. Eng. Sci., 225(1), 66-72. https://doi.org/10.1243/09544062JMES2199.
  50. Wang, J. and Chen, J. (2017), "A comparative study on different walking load models", Struct. Eng. Mech., 63(6), 847-856. https://doi.org/10.12989/sem.2017.63.6.847.
  51. Wang, L., Chen, J., Lou, J.Y. and Li, G. (2016), "Modeling with tests for single human bounce load", J. Vib. Shock, 35(17), 53-57. (in Chinese)
  52. Wang, Q., Qiao, H., Li, W., You, Y., Fan, Z. and Tiwari, N. (2020a), "Parametric optimization of an inerter-based vibration absorber for wind-induced vibration mitigation of a tall building", Wind Struct., 31(3), 241-253. https://doi.org/10.12989/was.2020.31.3.241.
  53. Wang, Y., Chen, Q., Zhao, Z. and Hu, X. (2020b), "Input energy spectra and energy characteristics of the hysteretic nonlinear structure with an inerter system", Struct. Eng. Mech., 76(6), 709. https://doi.org/10.12989/sem.2020.76.6.709.
  54. Willford, M., Young, P. and Algaard, W.H. (2006), "A constrained layer damping system for composite floors", Struct. Eng., 84(4), 31-39.
  55. Yang, J., Jiang, J.Z., Zhu, X. and Chen, H. (2017), "Performance of a dual-stage inerter-based vibration isolator", Procedia Eng., 199, 1822-1827. https://doi.org/10.1016/j.proeng.2017.09.097.
  56. Zhang, R., Cao, Y. and Dai, K. (2021), "Response control of wind turbines with ungrounded Tuned Mass Inerter System (TMIS) under wind loads", Wind Struct., 32(6), 573-586. https://doi.org/10.12989/was.2021.32.6.573.
  57. Zhang, R., Zhao, Z. and Dai, K. (2019), "Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system", Eng. Struct., 180, 29-39. https://doi.org/10.1016/j.engstruct.2018.11.020.
  58. Zhu, Q., Hui, X., Du, Y. and Zhang, Q. (2019), "A full path assessment approach for vibration serviceability and vibration control of footbridges", Struct. Eng. Mech., 70(6), 765-779. https://doi.org/10.12989/sem.2019.70.6.765.