과제정보
The research work financed with the means of the National Natural Science Foundation of China under Grant 51775097 and College Level Research Project Fund of Yingkou Institute of Technology 110504011.
참고문헌
- Arnold, T.W. (2011), "Uninformative parameters and model selection using akaike's information criterion", J. Wildlife Manage., 74(6), 1175-1178. http://doi.org/10.2193/2009-367.
- Au, S.K. and Beck, J.L. (2001), "Estimation of small failure probabilities in high dimensions by subset simulation", Prob. Eng. Mech., 16(4), 263-277. https://doi.org/10.1016/S0266-8920(01)00019-4.
- Basaga, H.B., Bayraktar, A. and Kaymaz, I. (2012), "An improved response surface method for reliability analysis of structures", Struct. Eng. Mech., 42(2), 175-189. https://doi.org/10.12989/sem.2012.42.2.175.
- Beer, M. and Spanos, P.D. (2009), "A neural network approach for simulating stationary stochastic processes", Struct. Eng. Mech., 32(1), 71-94. https://doi.org/10.12989/sem.2009.32.1.071.
- Bichon, B.J., Eldred, M.S., Swiler, L.P., Mahadevan, S. and McFarland, J.M. (2008), "Efficient global reliability analysis for nonlinear implicit performance functions", AIAA J., 46, 2459- 2468. http://doi.org/10.2514/1.34321.
- Cheng, J., Cai, C. and Xiao, R.C. (2007), "Application of artificial neural networks to the response prediction of geometrically nonlinear truss structures", Struct. Eng. Mech., 26(3), 251-262. https://doi.org/10.12989/sem.2007.26.3.251.
- Echard, B., Gayton, N. and Lemaire, M. (2011), "AK-MCS: An active learning reliability method combining kriging and monte carlo simulation", Struct. Saf., 33(2), 145-154. http://doi.org/10.1016/j.strusafe.2011.01.002.
- Echard, B., Gayton, N., Lemaire, M. and Relun, N. (2013), "A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models", Reliab. Eng. Syst. Saf., 111(2), 232-240. http://doi.org/10.1016/j.ress.2012.10.008.
- Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004), "Least angle regression", Ann. Statist., 32(2), 407-451. https://doi.org/10.1214/009053604000000067.
- Fang, Y. and Teea, K.F. (2017), "Structural reliability analysis using response surface method with improved genetic algorithm", Struct. Eng. Mech., 62(2), 139-142. https://doi.org/10.12989/sem.2017.62.2.139.
- Fang, Y.F. and Teea, K.F. (2017), "Structural reliability analysis using response surface method with improved genetic algorithm", Struct. Eng. Mech., 62(2), 139-142. http://doi.org/10.12989/sem.2017.62.2.139.
- Gaspar, B., Naess, A., Leira, B.J. and Soares, C.G. (2014), "System reliability analysis by Monte Carlo based method and finite element structural models", J. Offsh. Mech. Arct. Eng., 136(3), 031603. http://doi.org/10.1115/1.4025871.
- Hong, Y.L. (2013), "On computing the distribution function for the poisson binomial distribution", Comput. Stat. Data Anal., 59, 41-51. https://doi.org/10.1016/j.csda.2012.10.006.
- Jian, W., Zhili, S., Qiang, Y. and Rui, L. (2017) "Two accuracy measures of the kriging model for structural reliability analysis", Reliab. Eng. Syst. Saf., 167, 494-505. https://doi.org/10.1016/j.ress.2017.06.028.
- Kaintura, A., Spina, D., Couckuyt, I., Knockaert, L., Bogaerts, W. and Dhaene, T. (2017), "A kriging and stochastic collocation ensemble for uncertainty quantification in engineering applications", Eng. Comput., 33(4), 935-949. http://doi.org/10.1007/s00366-017-0507-0.
- Liu, Q., Fu, W., Qin, J., Zheng, W.X. and Gao, H. (2017), "Distributed k-means algorithm for sensor networks based on multi-agent consensus theory", IEEE Tran. Cybernet., 47(3), 772-783. http://doi.org/10.1109/TCYB.2016.2526683.
- Lv, Z., Lu, Z. and Wang, P. (2015), "A new learning function for Kriging and its applications to solve reliability problems in engineering", Comput. Math. Appl., 70, 1182-1197. http://doi.org/10.1016/j.camwa.2015.07.004.
- Qiu, Y.S. and Bai, J.Q. (2015), "Stationary flow fields prediction of variable physical domain based on proper orthogonal decomposition and kriging surrogate model", Chin. J. Aeronaut., 28(1), 44-56. http://doi.org/10.1016/j.cja.2014.12.017.
- Rackwitz, R. (2001), "Reliability analysis-a review and some perspectives", Struct. Saf., 23(4), 365-395. http://dx.doi.org/10.1016/S0167-4730(02)00009-7.
- Rad, H.N., Hasanipanah, M., Rezaei, M. and Eghlim, A.L. (2018) "Developing a least squares support vector machine for estimating the blast-induced fly rock", Eng. Comput., 34(4), 709-717. https://doi.org/10.1007/s00366-017-0568-0.
- Schobi, R., Sudret, B. and Wiart, J. (2015), "Polynomial-chaos-based Kriging", Int. J. Uncert. Quantif., 5(2), 171-193. http://doi.org/10.1615/Int.J.UncertaintyQuantification.2015012467
- Su, C.Q. and Zhang, Y.M. (2012), "Reliability sensitivity estimation of rotor system with oil whip and resonance", Adv. Mater. Res., 9(6), 110-114. https://doi.org/10.4028/www.scientific.net/AMR.544.110.
- Sun, Z., Wang, J., Li, R. and Tong, C. (2017), "LIF: A new kriging based learning function and its application to structural reliability analysis", Reliab. Eng. Syst. Saf., 157, 152-165. https://doi.org/10.1016/j.ress.2016.09.003.
- Toal, D.J. (2016), "A study into the potential of GPUs for the efficient construction and evaluation of kriging models", Eng. Comput., 32(3), 377-404. http://doi.org/10.1007/s00366-015-0421-2.
- Tong, C., Sun, Z., Zhao, Q., Wang, Q. and Wang, S. (2015), "A hybrid algorithm for reliability analysis combining Kriging and subset simulation importance sampling", J. Mech. Sci. Technol., 29(8), 3183-3193. http://doi.org/10.1007/s12206-015-0717-6.
- Vahedi, J., Ghasemi, M.R. and Miri, M. (2018), "Structural reliability assessment using an enhanced adaptive kriging method", Struct. Eng. Mech., 66(6), 677-691. https://doi.org/10.12989/sem.2018.66.6.677.
- Wang, C. and Matthies, H.G. (2019), "Epistemic uncertainty-based reliability analysis for engineering system with hybrid evidence and fuzzy variables", Comput. Meth. Appl Mech. Eng., 355, 438-455. https://doi.org/10.1016/j.cma.2019.06.036.
- Wang, C. and Matthies, H.G. (2020), "A comparative study of two interval-random models for hybrid uncertainty propagation analysis", Mech. Syst. Signal Pr., 136(1), 106531. https://doi.org/10.1016/j.ymssp.2019.106531.
- Wang, C., Qiu, Z., Xu, M. and Li, Y. (2017), "Novel reliability-based optimization method for thermal structure with hybrid random, interval and fuzzy parameters", Appl. Math. Model., 47(7), 573-586. https://doi.org/10.1016/j.apm.2017.03.053.
- Wang, H., Wang, S.P. and Milete, M.T. (2010), "Modified sequential kriging optimization for multidisciplinary complex product simulation chinese", J. Aeronaut., 23(5), 616-622. http://doi.org/10.1016/S1000-9361(09)60262-4.
- Wang, J. and Sun, Z.L. (2018), "The stepwise accuracy-improvement strategy based on the kriging model for structural reliability analysis", Struct. Multidisc. Optim., 58(2), 595-612. https://doi.org/10.1007/s00158-018-1911-9
- Wang, Z. and Shafieezadeh, A. (2019), "REAK: Reliability analysis through error rate-based adaptive kriging", Reliab. Eng. Syst Saf., 182, 33-45. https://doi.org/10.1016/j.ress.2018.10.004.
- Wen, Z., Pei, H., Liu, H. and Yue, Z. (2016), "A sequential kriging reliability analysis method with characteristics of adaptive sampling regions and parallelizability", Reliab. Eng. Syst. Saf., 153, 170-179. http://doi.org/10.1016/j.ress.2016.05.002.
- Yang, X., Liu, Y., Gao, Y., Zhang, Y. and Gao, Z. (2015), "An active learning Kriging model for hybrid reliability analysis with both random and interval variables", Struct. Multidisc. Optim., 51, 1003-1016. http://doi.org/10.1007/s00158-014-1189-5.
- Yang, X., Mi, C., Deng, D. and Liu, Y. (2019), "A system reliability analysis method combining active learning kriging model with adaptive size of candidate points", Struct. Multidisc. Optim., 60(1), 137-150. https://doi.org/10.1007/s00158-019-02205-x.
- Zhang, Y., Sun, Z., Yan, Y., Yu, Z. and Wang, J. (2019), "An efficient adaptive reliability analysis method based on kriging and weighted average misclassification rate improvement", IEEE Access, 7, 94954-94965. http://doi.org/10.1109/ACCESS.2019.2928332.
- Zhao, H., Yue, Z., Liu, Y., Gao, Z. and Zhang, Y. (2015), "An efficient reliability method combining adaptive importance sampling and kriging metamodel", Appl. Math. Model., 39(7), 1853-1866. http://doi.org/10.1016/j.apm.2014.10.015
- Zhao, W.T., Shi, X.Y. and Tang, K. (2016), "A response surface method based on sub-region of interest for structural reliability analysis", Struct. Eng. Mech., 57(4), 587-602. https://doi.org/10.12989/sem.2016.57.4.587.
- Zhao, Y.G. and Ono, T. (1999), "A general procedure for first/second-order reliability method (FORM/SORM)", Struct. Saf., 21(2), 95-112. https://doi.org/10.1016/S0167-4730(99)00008-9.