Acknowledgement
This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2018-2014-1-00720) supervised by the IITP (Institute for Information & communications Technology Promotion).
References
- World Health Organization. mHealth: New horizons for health through mobile technologies: Second global survey on eHealth. Geneva: World Health Organization; 2011. p. 66-71.
- Becker S, Miron-Shatz T, Schumacher N, Krocza J, Diamantidis C, Albrecht UV. mHealth 2.0: Experiences, possibilities, and perspectives. JMIR Mhealth Uhealth 2014; 2(2): e24. https://doi.org/10.2196/mhealth.3328
- Korea Internet & Security Agency (KISA) and Ministry of Science and ICT. 2017 survey on the internet usage [Internet]. Korea Internet & Security Agency; 2018 [cited 2021 Jun 11]. Available from: https://www.kisa.or.kr.
- National Information Society Agency (NIA). Internet usage survey of Korea 2020 [Internet]. National Information Society Agency; 2021 [cited 2021 Apr 04]. Available from: https://www.nia.or.kr.
- Franco RZ, Fallaize R, Lovegrove JA, Hwang F. Popular nutrition-related mobile apps: A feature assessment. JMIR Mhealth Uhealth 2016; 4(3): e85. https://doi.org/10.2196/mhealth.5846
- Zhou L, Saptono A, Setiawan IMA, Parmanto B. Making self-management mobile health apps accessible to people with disabilities: Qualitative single-subject study. J Med Internet Res 2020; 22(1): e15060.
- Research 2 Guidance. mHealth economics 2017 - Current status and future trends in mobile health [Internet]. 2017 [cited 2020 Nov 06]. Available from: https://research2guidance.com/325000-mobile-health-apps-available-in-2017/.
- Statistia. Global digital health market size between 2015 and 2025, by major segment [Internet]. Statista; 2020 [cited 2020 Nov 06]. Available from: https://www.statista.com/statistics/387867/value-of-worldwide-digital-health-market-forecast-by-segment/.
- GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392(10159): 1736-1788. https://doi.org/10.1016/S0140-6736(18)32203-7
- GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019; 393(10184): 1958-1972. https://doi.org/10.1016/S0140-6736(19)30041-8
- Payne HE, Lister C, West JH, Bernhardt JM. Behavioral functionality of mobile apps in health interventions: A systematic review of the literature. JMIR Mhealth Uhealth 2015; 3(1): e20. https://doi.org/10.2196/mhealth.3335
- Teasdale N, Elhussein A, Butcher F, Piernas C, Cowburn G, Hartmann-Boyce J et al. Systematic review and meta-analysis of remotely delivered interventions using self-monitoring or tailored feedback to change dietary behavior. Am J Clin Nutr 2018; 107(2): 247-256. https://doi.org/10.1093/ajcn/nqx048
- Burke LE, Wang J, Sevick MA. Self-monitoring in weight loss: A systematic review of the literature. J Am Diet Assoc 2011; 111(1): 92-102. https://doi.org/10.1016/j.jada.2010.10.008
- Lee JE, Song S, Ahn JS, Kim Y, Lee JE. Use of a mobile application for self-monitoring dietary intake: Feasibility test and an intervention study. Nutrients 2017; 9(7): 748. https://doi.org/10.3390/nu9070748
- Mummah SA, Mathur M, King AC, Gardner CD, Sutton S. Mobile technology for vegetable consumption: A randomized controlled pilot study in overweight adults. JMIR Mhealth Uhealth 2016; 4(2): 1-13.
- Ashman AM, Collins CE, Brown LJ, Rae KM, Rollo ME. Validation of a smartphone image-based dietary assessment method for pregnant women. Nutrients 2017; 9(1): 73. https://doi.org/10.3390/nu9010073
- Tsai CC, Lee G, Raab F, Norman GJ, Sohn T, Griswold WG et al. Usability and feasibility of PmEB: A mobile phone application for monitoring real time caloric balance. Mob Netw Appl 2007; 12(2-3): 173-184. https://doi.org/10.1007/s11036-007-0014-4
- Zang J, Song J, Wang Z, Yao C, Ma J, Huang C et al. Acceptability and feasibility of smartphone-assisted 24 h recalls in the Chinese population. Public Health Nutr 2015; 18(18): 3272-3277. https://doi.org/10.1017/S1368980015000907
- Bangor A, Kortum PT, Miller JT. An empirical evaluation of the system usability scale. Int J Hum-Comput Interact 2008; 24(6): 574-594. https://doi.org/10.1080/10447310802205776
- Ryu YS, Smith-Jackson TL. Reliability and validity of the mobile phone usability questionnaire (MPUQ). J Usability Stud 2006; 2(1): 39-53.
- Yen PY, Wantland D, Bakken S. Development of a customizable health IT usability evaluation scale. Proceedings of AMIA Annual Symposium. 2010 Nov 13; Washington, DC: p. 917-921.
- DiFilippo KN, Huang W, Chapman-Novakofski KM. A new tool for Nutrition App Quality Evaluation (AQEL): Development, validation, and reliability testing. JMIR Mhealth Uhealth 2017; 5(10): e163. https://doi.org/10.2196/mhealth.7441
- Ferrara G, Kim J, Lin S, Hua J, Seto E. A focused review of smartphone diet-tracking apps: Usability, functionality, coherence with behavior change theory, and comparative validity of nutrient intake and energy estimates. JMIR Mhealth Uhealth 2019; 7(5): e9232. https://doi.org/10.2196/mhealth.9232
- Boushey CJ, Spoden M, Zhu FM, Delp EJ, Kerr DA. New mobile methods for dietary assessment: Review of image-assisted and image-based dietary assessment methods. Proc Nutr Soc 2017; 76(3): 283-294. https://doi.org/10.1017/S0029665116002913
- Chin JP, Diehl VA, Norman KL. Development of an instrument measuring user satisfaction of the human-computer interface. Proceedings of the SIGCHI conference on Human factors in computing systems; 1988 May 15; Washington, DC: p. 213-218.
- Fruhling A, Lee S. Assessing the reliability, validity and adaptability of PSSUQ. Proceedings of 11th Americas Conference on Information Systems; 2005 Aug 11; Omaha: p. 2394-2402.
- Kollmann A, Riedl M, Kastner P, Schreier G, Ludvik B. Feasibility of a mobile phone-based data service for functional insulin treatment of type 1 diabetes mellitus patients. J Med Internet Res 2007; 9(5): e36. https://doi.org/10.2196/jmir.9.5.e36
- Welch J, Dowell S, Johnson CS. Feasibility of using a personal digital assistant to self-monitor diet and fluid intake: A pilot study. Nephrol Nurs J 2007; 34(1): 43-49.
- Kang TS, Eom MD, Nam KS, Park SY. Customized diet information system. J Korea Inst Inf Commun Eng 2010; 14(2): 430-436. https://doi.org/10.6109/JKIICE.2010.14.2.430
- Arab L, Wesseling-Perry K, Jardack P, Henry J, Winter A. Eight self-administered 24-hour dietary recalls using the internet are feasible in African Americans and Whites: The energetics study. J Am Diet Assoc 2010; 110(6): 857-864. https://doi.org/10.1016/j.jada.2010.03.024
- Finstad K. The usability metric for user experience. Interact Comput 2010; 22(5): 323-327. https://doi.org/10.1016/j.intcom.2010.04.004
- Fromme EK, Kenworthy-Heinige T, Hribar M. Developing an easy-to-use tablet computer application for assessing patient-reported outcomes in patients with cancer. Support Care Cancer 2011; 19(6): 815-822. https://doi.org/10.1007/s00520-010-0905-y
- Tariman JD, Berry DL, Halpenny B, Wolpin S, Schepp K. Validation and testing of the acceptability E-scale for web-based patient-reported outcomes in cancer care. Appl Nurs Res 2011; 24(1): 53-58. https://doi.org/10.1016/j.apnr.2009.04.003
- Kirwan M, Duncan MJ, Vandelanotte C, Mummery WK. Using smartphone technology to monitor physical activity in the 10,000 Steps program: A matched case-control trial. J Med Internet Res 2012; 14(2): e55. https://doi.org/10.2196/jmir.1950
- Kelly L, Jenkinson C, Ziebland S. Measuring the effects of online health information for patients: Item generation for an e-health impact questionnaire. Patient Educ Couns 2013; 93(3): 433-438. https://doi.org/10.1016/j.pec.2013.03.012
- Spook JE, Paulussen T, Kok G, Van Empelen P. Monitoring dietary intake and physical activity electronically: Feasibility, usability, and ecological validity of a mobile-based Ecological Momentary Assessment tool. J Med Internet Res 2013; 15(9): e2617.
- Anderson C, Henner T, Burkey J. Tablet computers in support of rural and frontier clinical practice. Int J Med Inform 2013; 82(11): 1046-1058. https://doi.org/10.1016/j.ijmedinf.2013.08.006
- Shah N, Jonassaint J, De Castro L. Patients welcome the sickle cell disease mobile application to record symptoms via technology (SMART). Hemoglobin 2014; 38(2): 99-103. https://doi.org/10.3109/03630269.2014.880716
- O'Connor E, Farrow M, Hatherly C. Randomized comparison of mobile and web-tools to provide dementia risk reduction education: Use, engagement and participant satisfaction. JMIR Ment Health 2014; 1(1): e4. https://doi.org/10.2196/mental.3654
- Teri S, Acai A, Griffith D, Mahmoud Q, Ma DW, Newton G. Student use and pedagogical impact of a mobile learning application. Biochem Mol Biol Educ 2014; 42(2): 121-135. https://doi.org/10.1002/bmb.20771
- Kwon GM, Kim AR, Kim SI. The activation methods of mobile service through usability testing: Focus on comparison mobile application YES24 and KYOBO bookstores. J Digit Des 2014; 14(3): 391-399.
- Shanahan CW, Sorensen-Alawad A, Carney BL, Persand I, Cruz A, Botticelli M et al. The implementation of an integrated information system for substance use screening in general medical settings. Appl Clin Inform 2014; 5(4): 878-894. https://doi.org/10.4338/ACI-2014-03-RA-0025
- Bae J, Kim S. Usability evaluation for mobile commerce of large-scale retailer by the increase of single-person households: Focused on comparison between E-mart and Homeplus. J Digit Des 2014; 14(1): 201-210.
- Stoyanov SR, Hides L, Kavanagh DJ, Zelenko O, Tjondronegoro D, Mani M. Mobile app rating scale: A new tool for assessing the quality of health mobile apps. JMIR Mhealth Uhealth 2015; 3(1): e3422.
- Diamantidis CJ, Ginsberg JS, Yoffe M, Lucas L, Prakash D, Aggarwal S et al. Remote usability testing and satisfaction with a mobile health medication inquiry system in CKD. Clin J Am Soc Nephrol 2015; 10(8): 1364-1370. https://doi.org/10.2215/CJN.12591214
- Hutchesson MJ, Rollo ME, Callister R, Collins CE. Self-monitoring of dietary intake by young women: Online food records completed on computer or smartphone are as accurate as paper-based food records but more acceptable. J Acad Nutr Diet 2015; 115(1): 87-94. https://doi.org/10.1016/j.jand.2014.07.036
- Pretlow RA, Stock CM, Allison S, Roeger L. Treatment of child/adolescent obesity using the addiction model: A smartphone app pilot study. Child Obes 2015; 11(3): 248-259. https://doi.org/10.1089/chi.2014.0124
- van Osch M, Rovekamp A, Bergman-Agteres SN, Wijsman LW, Ooms SJ, Mooijaart SP et al. User preferences and usability of iVitality: Optimizing an innovative online research platform for home-based health monitoring. Patient Prefer Adherence 2015; 9: 857-867. https://doi.org/10.2147/ppa.s82510
- Agboola S, Palacholla RS, Centi A, Kvedar J, Jethwani K. A multimodal mHealth intervention (FeatForward) to improve physical activity behavior in patients with high cardiometabolic risk factors: Rationale and protocol for a randomized controlled trial. JMIR Res Protoc 2016; 5(2): e84. https://doi.org/10.2196/resprot.5489
- Mercer K, Giangregorio L, Schneider E, Chilana P, Li M, Grindrod K. Acceptance of commercially available wearable activity trackers among adults aged over 50 and with chronic illness: A mixed-methods evaluation. JMIR Mhealth Uhealth 2016; 4(1): e7. https://doi.org/10.2196/mhealth.4225
- Wilson K, Atkinson KM, Westeinde J, Bell C, Marty K, Fergusson D et al. An evaluation of the feasibility and usability of a proof of concept mobile app for adverse event reporting post influenza vaccination. Hum Vaccin Immunother 2016; 12(7): 1738-1748.
- Rhyner D, Loher H, Dehais J, Anthimopoulos M, Shevchik S, Botwey RH et al. Carbohydrate estimation by a mobile phone-based system versus self-estimations of individuals with type 1 diabetes mellitus: A comparative study. J Med Internet Res 2016; 18(5): e5567.
- Rickard N, Arjmand HA, Bakker D, Seabrook E. Development of a mobile phone app to support self-monitoring of emotional well-being: A mental health digital innovation. JMIR Ment Health 2016; 3(4): e49. https://doi.org/10.2196/mental.6202
- Ribeiro N, Moreira L, Barros A, Almeida AM, Santos-Silva F. Guidelines for a cancer prevention smartphone application: A mixed-methods study. Int J Med Inform 2016; 94: 134-142. https://doi.org/10.1016/j.ijmedinf.2016.07.007
- Svensson A, Magnusson M, Larsson C. Overcoming barriers: Adolescents' experiences using a mobile phone dietary assessment app. JMIR Mhealth Uhealth 2016; 4(3): e92. https://doi.org/10.2196/mhealth.5700
- Ward R, Taha KM. Patient involvement as experts in the development and assessment of a smartphone app as a patient education tool for the management of thalassemia and iron overload syndromes. Hemoglobin 2016; 40(5): 323-329. https://doi.org/10.1080/03630269.2016.1217875
- Wang J, Lam RW, Ho K, Attridge M, Lashewicz BM, Patten SB et al. Preferred features of e-mental health programs for prevention of major depression in male workers: Results from a Canadian National Survey. J Med Internet Res 2016; 18(6): e132. https://doi.org/10.2196/jmir.5685
- McManus DD, Chong JW, Soni A, Saczynski JS, Esa N, Napolitano C et al. PULSE-SMART: Pulse-based arrhythmia discrimination using a novel smartphone application. J Cardiovasc Electrophysiol 2016; 27(1): 51-57. https://doi.org/10.1111/jce.12842
- Nishiguchi S, Ito H, Yamada M, Yoshitomi H, Furu M, Ito T et al. Self-assessment of rheumatoid arthritis disease activity using a smartphone application. Development and 3-month feasibility study. Methods Inf Med 2016; 55(1): 65-69. https://doi.org/10.3414/ME14-01-0106
- English LL, Dunsmuir D, Kumbakumba E, Ansermino JM, Larson CP, Lester R et al. The Paediatric Risk Assessment (PARA) mobile app to reduce postdischarge child mortality: Design, usability, and feasibility for health care workers in Uganda. JMIR Mhealth Uhealth 2016; 4(1): e5167.
- Peterson CM, Apolzan JW, Wright C, Martin CK. Video chat technology to remotely quantify dietary, supplement and medication adherence in clinical trials. Br J Nutr 2016; 116(9): 1646-1655. https://doi.org/10.1017/S0007114516003524
- Spittle AJ, Olsen J, Kwong A, Doyle LW, Marschik PB, Einspieler C et al. The baby moves prospective cohort study protocol: Using a smartphone application with the general movements assessment to predict neurodevelopmental outcomes at age 2 years for extremely preterm or extremely low birthweight infants. BMJ Open 2016; 6(10): e013446. https://doi.org/10.1136/bmjopen-2016-013446
- Lee JY, Kim SI. A study on development of travel application UI design for improving user experience. J Digit Converg 2017; 15(2): 369-374. https://doi.org/10.14400/JDC.2017.15.2.369
- Oh YB, Kim WK. A study on mobile game UI design element considering user experience: Focused on management simulation game. Korean Soc Des Cult 2017; 23(2): 413-428.
- Lee E, Han S, Jo SH. Consumer choice of on-demand mHealth app services: Context and contents values using structural equation modeling. Int J Med Inform 2017; 97: 229-238. https://doi.org/10.1016/j.ijmedinf.2016.10.016
- Chen J, Lieffers J, Bauman A, Hanning R, Allman-Farinelli M. Designing health apps to support dietetic professional practice and their patients: Qualitative results from an international survey. JMIR Mhealth Uhealth 2017; 5(3): e40. https://doi.org/10.2196/mhealth.6945
- Tay I, Garland S, Gorelik A, Wark JD. Development and testing of a mobile phone app for self-monitoring of calcium intake in young women. JMIR Mhealth Uhealth 2017; 5(3): e27. https://doi.org/10.2196/mhealth.5717
- Coppock D, Zambo D, Moyo D, Tanthuma G, Chapman J, Lo Re III V et al. Development and usability of a smartphone application for tracking antiretroviral medication refill data for human immunodeficiency virus. Methods Inf Med 2017; 56(5): 351-359. https://doi.org/10.3414/me17-01-0045
- Shellington EM, Felfeli T, Shigematsu R, Gill DP, Petrella RJ. HealtheBrain: An innovative smartphone application to improve cognitive function in older adults. Mhealth 2017; 3: 17. https://doi.org/10.21037/mhealth.2017.04.05
- Beiwinkel T, Hey S, Bock O, Rossler W. Supportive mental health self-monitoring among smartphone users with psychological distress: Protocol for a fully mobile randomized controlled trial. Front Public Health 2017; 5: 249. https://doi.org/10.3389/fpubh.2017.00249
- Hayashi A, Yamaguchi S, Waki K, Fujiu K, Hanafusa N, Nishi T et al. Testing the feasibility and usability of a novel smartphone-based self-management support system for dialysis patients: A pilot study. JMIR Res Protoc 2017; 6(4): e63. https://doi.org/10.2196/resprot.7105
- Kelly MM, Hoonakker PL, Dean SM. Using an inpatient portal to engage families in pediatric hospital care. J Am Med Inform Assoc 2017; 24(1): 153-161. https://doi.org/10.1093/jamia/ocw070
- Herrmann LK, Kim J. The fitness of apps: A theory-based examination of mobile fitness app usage over 5 months. Mhealth 2017; 3: 2. https://doi.org/10.21037/mhealth.2017.01.03
- Kim SW, Lee GY, Yu HY, Jung EI, Lee JY, Kim SY et al. Development and feasibility of smartphone application for cognitive-behavioural case management of individuals with early psychosis. Early Interv Psychiatry 2018; 12(6): 1087-1093. https://doi.org/10.1111/eip.12418
- Brooke J. SUS: A quick and dirty usability scale. London: Taylor and Francis; 1996.
- Fakih El Khoury C, Karavetian M, Halfens RJG, Crutzen R, Khoja L, Schols JMGA. The effects of dietary mobile apps on nutritional outcomes in adults with chronic diseases: A systematic review and meta-analysis. J Acad Nutr Diet 2019; 119(4): 626-651. https://doi.org/10.1016/j.jand.2018.11.010
- Dorsch MP, Cornellier ML, Poggi AD, Bilgen F, Chen P, Wu C et al. Effects of a novel contextual just-in-time mobile app intervention (lowsalt4life) on sodium intake in adults with hypertension: Pilot randomized controlled trial. JMIR Mhealth Uhealth 2020; 8(8): e16696. https://doi.org/10.2196/16696
- Michie S, Richardson M, Johnston M, Abraham C, Francis J, Hardeman W et al. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: Building an international consensus for the reporting of behavior change interventions. Ann Behav Med 2013; 46(1): 81-95. https://doi.org/10.1007/s12160-013-9486-6
- Schoeppe S, Alley S, Van Lippevelde W, Bray NA, Williams SL, Duncan MJ et al. Efficacy of interventions that use apps to improve diet, physical activity and sedentary behaviour: A systematic review. Int J Behav Nutr Phys Act 2016; 13(1): 127. https://doi.org/10.1186/s12966-016-0454-y
- de Winter JC, Dodou D, Wieringa PA. Exploratory factor analysis with small sample sizes. Multivariate Behav Res 2009; 44(2): 147-181. https://doi.org/10.1080/00273170902794206