
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, Apr. 2022 1307
Copyright ⓒ 2022 KSII

http://doi.org/10.3837/tiis.2022.04.012 ISSN : 1976-7277

An Improved Pseudorandom Sequence
Generator and its Application to Image

Encryption

Keshav Sinha1*, Partha Paul2, and Amritanjali1
1Birla Institute of Technology, Mesra, Ranchi

Jharkhand, 835215 India
[e-mail: keshav.sinha@yandex.com, amritanjali@bitmesra.ac.in]

2Sarala Birla University, Ranchi
Jharkhand, 835103 India

[e-mail: p_india@rediffmail.com]
*Corresponding author: Keshav Sinha

Received July 30, 2021; revised October 1, 2021; revised February 5, 2022; accepted February 16, 2022;

published April 30, 2022

Abstract

This paper proposes an improved Pseudorandom Sequence Generator (PRSG) based on the
concept of modular arithmetic systems with non-integral numbers. The generated random
sequence use in various cryptographic applications due to its unpredictability. Here the
mathematical model is designed to solve the problem of the non-uniform distribution of the
sequences. In addition, PRSG has passed the standard statistical and empirical tests, which
shows that the proposed generator has good statistical characteristics. Finally, image
encryption has been performed based on the sort-index method and diffusion processing to
obtain the encrypted image. After a thorough evaluation of encryption performance, there has
been no direct association between the original and encrypted images. The results show that
the proposed PRSG has good statistical characteristics and security performance in
cryptographic applications.

Keywords: Pseudorandom sequence generator, Image security, Probability distribution,
Non-integral numbers, Modular arithmetic system, Differential attack.

1308 Sinha et al.: An Improved Pseudorandom Sequence Generator
and its Application to Image Encryption

1. Introduction

An adversary performs various types of attacks on cryptography applications. However,
various cryptographic algorithms require random numbers to generate secret keys, nonce, and
session keys. The role of the random sequence is to withstand various attacks and provide
security to the data. The cryptographic algorithms divide into (i) Symmetric and (ii)
Asymmetric encryption. A random number is required for key generation in symmetric
encryption, whereas asymmetric encryption requires random bits for padding with the original
data. However, hash functions require random numbers for indexing and mapping to provide
data integrity and authenticity. This paper concentrates on pseudorandom sequence generation,
tests the generated sequence with NIST-STS, and then is used to sort-index based image
encryption. The encryption using random numbers requires four factors such as (i) Re-
generable, (ii) Statistically Independent, (iii) Uniformly Distributed, and (iv) Storage Efficient.
The pseudorandom number generator (PRNG) provides an appropriate solution for generating
a secret key. PRNGs are similar to cryptography, where the user feeds the secret seed (S) (low
entropy input) into the pseudo system, and it will generate random output (fuzzy random
stream).
 The cryptographic algorithms have inbuilt blocks for key generation, but they require
intense computation. PRNG is used for key generation to cope with the problem of
computational time. However, these PRNGs fail to produce large space sequences due to the
linearity produced by the generator's integer parameters. The proposed Pseudorandom
Sequence Generator uses the property of irrationality to generate the random sequence. The
randomness of PRSG determines by evaluating the random bits with the NIST- STS. Apart
from the statistical properties, there are two main requirements for PRSG such as speed and
robustness. The speed may not play an essential role while generating the single cryptographic
key, but in the case of a stream cipher, simulation or masking of protocols require a large
number of random sequences, and thus speed becomes the essential prerequisite during that
situation. The robustness of PRSG against attacks plays an essential role in data security. The
significant contributions of this work are as follows:

(1) The improved pseudorandom sequence generator using non-integral numbers is proposed
to avoid the linearity in the generation and provide large sequence space.

(2) The main idea uses the properties of non-terminating, non-repeating decimals in a modulo
arithmetic system to generate the sequence endlessly.

(3) The standard and empirical analysis is performed to validate the randomness of generated
sequences.

(4) The secure image encryption has been performed using the constructed pseudo-random
generator.

(5) The uniformity in generated keys for image encryption is examined using variance and
key sensitivity analyses.

(6) The degree of uncertainty in the generated random variable is examined using Entropy
analysis.

(7) The key-space and speed-space analyses is used to measure the strength of the proposed
generator that resists brute force attacks.

The rest of this work has been organizing as follows. We introduce various traditional
mathematical models for pseudorandom number generators in Section 2. Section 3 and Section
4 present the overall architecture and performance evaluation of generated sequence. Section
5 examines the generated sequence by using image encryption. At last, the entire works have
been concluding in Section 6.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1309

2. Related Work
2.1. Random Number Generator
In the earlier time, mathematicians and scientists were very fascinated about generating
random numbers using deterministic systems. The feature of the generated sequence does not
allow any pattern or cycle in the generation. The family of randomness divides into four groups
[26] (i) Ontic, which always follows some fixed law or parameters to generate the sequence,
(ii) Epistemic follows the environmental factors or unknown laws for a generation. (iii) Pseudo,
uses the statistical properties to generate the random stream, and (iv) Telescopic, which is
neither random nor looks random. It is tough to conceive that any modern cryptographic
algorithm does not use random numbers. The random number generator classifies into three
classes: (i) True Random Number Generator (TRNG), (ii) Pseudorandom Number Generator
(PRNG), and (iii) Hybrid Random Number Generator (HRNG). A TRNG uses natural
randomness rather than non-deterministic sources. On the other hand, PRNG uses the
deterministic system to generate random numbers. The HRNG uses a seed value selected from
the hardware interface and atmospheric noise to generate the sequence.

2.2. Pseudorandom Number Generator
The pseudorandom generator uses mathematical models to generate the sequence. The
sequence generation requires seed value (Sx) and modulus function to generate numbers (Sx

 .(׳
For the next round, the (Sx

has fed as seed (Sx+1 (׳
Sx ←Sx = ׳

 the iteration continues until the ,(׳
system terminates. The PRNGs depend on the period that decides the length of the sequence
before reaching the same vector. For cryptographic application, the PRNGs required two
properties (i) they must pass the statistical test, and (ii) they resist various attacks [3].

2.3. PRNG Classification
The PRNG classifies into two types (i) 1/P Generator and (ii) Modulo Arithmetic System. In
1/𝑃𝑃 generator, the user input (P) as a prime number, which is divided by one to get the output
as a quotient. The drawback of this method is that (i) entirely predictable and (ii) generates a
small segment of a stream. On the other hand, Carl Friedrich Gauss [22] has first presented
the modern approach of the Modular arithmetic system. It introduced the terminologies such
as (i) Seed value, (ii) Deterministic sequence which passed randomness, and (iii) Cycle length,
Tail, and Period. In 1949, John Von Neumann had first developed the Middle-Square Method
(MSM), which has a concise range of sequence generation. The working principle of MSM is
elementary; here, the user has to take the (n) digit; from that, the middle (r) digit is squared
and used for the next round [18]. In [7], the authors generated uncountable finite numbers
using the concept of 1/p generator and presented them by using Eq. 1.

αb,c = ∑ 1
(bmcbm)

∞
m=1 (1)

Here c > 1 (integer), b = odd number and co-prime to c, and m = number of iteration. Stoneham
first coined the background of this generator as 2-normal. There are various pseudorandom
number generators based on the modular system. These systems had originated by using
Fermat law and the Euclid Division algorithm [28]. The Euclid Division Algorithm stated that
for any two integers ‘a’ and ‘b’, there exist unique numbers ‘q’ and ‘r’ such that, (a = bq + r),
{i.e., when a divides by b, it leaves quotient q and remainder r}, where (0 ≤ r < b and b ≠ 0)
and ‘q’ and ‘r’ is unique. The proposition of Fermat law for any integer is as follows, for any
integer ‘a’, there exists an integer ‘b’ such that, (a ≡ r mod b), where {r = remainder and b
divides a, {(0 ≤ r ≤ b), r ∈ I}. Now, according to Euclid and Fermat theorem, it is written as

1310 Sinha et al.: An Improved Pseudorandom Sequence Generator
and its Application to Image Encryption

[(a ≡ r mod b) ≅ (a = bq + r)] for some (q ∈ I). The congruence of the Fermat theorem had
extended the Euclid algorithm. Fermat stated [16] that for any integer ‘a’ and ‘m’, where (m
≠ 0) are said to be congruent modulo (m) is written as Eq. 2.

 a ≡ b mod m (2)
As seen from the Euclid algorithm, ‘b’ is unique, and the congruence mainly focuses on the
remainder. The properties of Euclid and Fermat theorems specify as follows:

(1) Property 1: Both calculate the remainder when another non-zero number divides the
number.

(2) Property 2: The number has uniquely written in the form of (a = bq + r) for every number
‘a’ and ‘b’, and it defines the stream (r1, r2, …, ri). Here, ri = remainder in each successive
step.

(3) Property 3: For every large integer, we obtain stream <r> = [r1, r2, …, rn], which is large
or small depending on the choice of the numbers.

The limitations of Euclid and Fermat theorem are as follows: (i) Both the algorithm
congruence do not define for non-integral numbers, (ii) It must need to have the track of every
upcoming number (even in decimals), (iii) It takes a very long time, and procedure for the
calculation of large numbers, and (iv) For every rational number the stream <r> is permanently
terminating, and hence it repeats after some time. These are some properties of traditional
generators for sequence generation.

2.3.1. Modulo Arithmetic System
In this section, we discuss some of the generators based on the modulo arithmetic system. In
1958, Linear Congruential Generator (LCG) had developed using the discontinuous linear
equation function, represented by Eq. 3 [4].

Xn+1 = (a × Xn + c) mod m (3)
Here seed value (Xn ∈ I), m = moduli, (m > 0), a = multiplier, and c = incrementor, and the
range of stream belongs to (0 ≤ a < m) & (0 ≤ c < m) and [a, c ∈ I]. The LCG system generates
long-range sequences, which use in various applications [20]. In 1986, Michael O. Rabin's
one-way function generated the random sequence presented using Eq. 4 [4].

Xn+1 = Xn
2 mod m (4)

Here Xn = seed value, m = (p × p) the product of large co-prime numbers (safe prime). The
BBS system generates an extended range of cryptographically secure sequences [23]. In [24],
the author has introduced the Fibonacci series-based pseudorandom number generator is
represented by using Eq. 5.

Fk = (A × k) mod B (5)
Here k = (1, 2, …, (B-2), (B-1)), and ‘A’ & ‘B’ are the Fibonacci numbers. The author had
claimed that it is easy to compute, secure, and generate long-range random sequences. The
generation of the pseudo number is a challenging task, and researchers are always trying to
find different ways to overcome this challenge.

2.3.2. Non-Integral Number
In this section, we present non-integral number-based sequence generation. In [14], the author
generated 134 million decimal random values of π on the NES SX-2 supercomputer. The
100,000 decimals random values had generated using the Euler constant (e) [9]. In [15] author
had computed one million random decimal values square root of 2. In [30], the author had
computed the different base values of square roots for 3, 5, 6, 7, and 10 for random number

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1311

generation. The digit generated for different base values is as follows: 55296, 36864, 32768,
30720, and 24576. In [5], the author had investigated the behavior of pseudorandom numbers
based on irrational numbers. The tests contain 100,000 decimal values for each π, Napier
constant (e), and the square root of 2, 3, 5, 7, 11, and 13 for the randomness test. In [19], the
author has proposed pseudorandom number generators based on the irrational numbers
presented by Eq. 6.

Xj = ��Xj−1+n� × K1 × (M−j)
K2

� mod n (6)

Here Xj = Seed value, j ∈ {1, 2, …, N}, n = positive integer (natural number), K1 & K2 are set
of irrational numbers, M = N + p (N is the maximum number of element ‘Xj’ and p ∈ N).

2.3.3. Chaotic System
The Chaos theory has an alternative way for the generation of random sequences for
cryptographic applications. The chaotic map categorizes into two different types (i) discrete-
time (logistic map) and (ii) continuous-time (Chen chaotic). Here we present five different
chaotic systems used in GANs training set [40].

(1) QCNN [32]:

⎩
⎪
⎨

⎪
⎧ g1 = −2a1�1− g12 sin h1

h1 = (−b1(g1 − g2) + 2a1 cos h1)/(�1 − g12)
g2 = −2a2�1− g22 sin h2

h2 = (−b2(g2 − g1) + 2a2g2 cos h2)/(�1− g22)

 (7)

Here g1 and g2 are polarizabilities, h1 and h2 are the quantum phase, a1 and a2 are proportional
energy coefficients, and b1 and b2 are weighted influence factors of adjacent cells. The chaotic
system works when it is initiated with (a1 = a2 = 0.28, b1 = 0.7, and b2= 0.3). The system will
generate millions of random bits, which has used for image encryption.

(2) 4D hyperchaotic system [31]:

⎩
⎨

⎧
x1 = δ1(x2 − x1)

x2 = δ2x1 + δ3x2 − x1x3 + x4
x3 = x22 – δ4x3

x4 = − δ5x1

 (8)

Here x1, x2, x3, and x4 represent the system state vector, δ1=27.5, δ2=3, δ3=19.3, δ4=2.9, and
δ5=3 are initial hyperchaotic system value, the generation required Lyapunov exponents which
is initialized as λ1 = 1.6170, λ2 = 0.1123, λ3 = 0, and λ4 = −12.8245. The positive value indicates
the system has positive exponents, generating a higher security random sequence.

1312 Sinha et al.: An Improved Pseudorandom Sequence Generator
and its Application to Image Encryption

(3) Fractional Chen hyperchaotic system [17]:

⎩
⎪⎪
⎨

⎪⎪
⎧

dα

dtα
 y1 = ω1(y2 − y1) + y4

dα

dtα
 y2 = ω2y1 − y1y3 + ω3y2
dα

dtα
 y3 = y1y2 − ω4y4

dα

dtα
 y4 = y2y3 +ω5y4

 (9)

Here y1, y2, y3, and y4 represent the initial system parameter and initialized as 2, 2, 25, and 2.
The system uses the positive values for ω1, ω2, ω3, ω4, and ω5 and it is initialized as 35, 3, 12,
7, and 0.58 respectively. The Lyapunov exponents of the hyperchaotic systems initialized as
λ1 = 0.2104 and λ2 = 0.126. The system will create higher security.

(4) Lorenz chaotic system [37]:

⎩
⎪
⎨

⎪
⎧

dq
dt

= φ1(w− q)
dw
dt

= qr −φ2q + w
dr
dt

= qw −φ3r

 (10)

The system initializes as φ1=10, φ2=24.72, and φ3>8/3 are the parameter of the Lorenz system,
and it is proportional to the Prandtl number and Rayleigh number. Here ‘r’ represents the rate
of change with respect to time, ‘q’ represents the rate of convection, ‘w’ represents the
horizontal temperature variation, and ‘z’ represents the vertical temperature. It will generate a
random sequence. The generated sequence is said to be the best chaotic system.

(5) Henon chaotic system [6]:

�x(n + 1) = 1 − ax(n)2 + y(n)
y(n + 1) = bx(n) (11)

Here a = 1.4, and b = 0.3 are the control parameters, and x, y ∈ Rw to control the dimension of
the chaotic system. The Henon map generates a large set of random sequences. The Chaotic
sequence is mainly used for cryptographic applications.

2.3.4. Traditional Generators
As mentioned earlier, PRNGs use encryption in various ways, such as XORing of random bits
with original data, padding with data, nonce, and key generation. In [29], image encryption
uses BBS systems, where the substitution cipher performs using random sequence on image
intensity. In [39], recurrent neural networks and long short-term memory (LSTM) design to
generate the random stream. M. Bellare et al. [21] proposed a finite pseudorandom function
for message block encryption using the XOR scheme. The [2] hybrid visual crypto-
steganography approach presents the color image, where the permutation and combination
technique shuffle the pixels. The strength of the PRNGs identifies using key-space, length of
the generated sequence, and speed of the generator, which are crucial for the cryptographic
key. In [8], the block cipher technique examines and observes that the weak cryptographic key
has generated using the tent map efficiently exploits the security of the S-box. The permutation
and diffusion structure has been created for image pixels to prevent the chosen-plaintext attack
[36]. In [12], the author has applied the brute force attack on Chen’s chaotic generated

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1313

sequence. The attack reveals 66% of the generated random sequence. Ultimately we have
concluded that the small key-space of PRNG quickly exposes the randomness.

3. Proposed Model
In this paper, a modular arithmetic system uses to generate the PRNG. As discussed earlier,
the generators state will easily get predicted when the low entropy of seed generates the
random sequence. The proposed generator has used the non-integral numbers to achieve
sufficient entropy.

3.1. Mathematical Foundation
This section presents the mathematical foundation for the proposed pseudorandom sequence
generator. The traditional pseudorandom generator is based on Fermat’s law and the Euclid
Division algorithm [42]. The limitations of Euclid and Fermat’s Theorem (1) It needs to track
every upcoming number in each step of the division algorithm, which is practically not
possible with non-integral numbers, (2) It takes a very long time, and procedure for the
calculation of extremely large numbers, and (3) Every rational number, the generated stream
is always terminating and hence it repeats after some time. The mathematical comparison for
traditional pseudorandom number generators, indicate some limitation of uniform random
sequence. It is observed that the streams are uniformly distributed but not cryptographically
secure.

To overcome the above mentioned issues, we propose a pseudorandom generator
based on the non-integral number with modular arithmetic to obtain the real numbers. The
non-integral number is categorized in two parts (i) Rational, and (ii) Irrational numbers. The
rational number is written in the form of �𝑝𝑝

𝑞𝑞
�, where (q ≠ 0). The proposed generator uses the

non-integral number which means ‘q’ does not divides the ‘p’, then there are two possibilities,
the decimal representation which terminates after a while or the sequence repeats itself and
goes on forever. The non-terminating, non-repeating behavior of non-integral number is
understood by using the continued fraction (C.F). At first sight it seems difficult to counter the
problem of recurrences. The use of continued fractions for any real number (whether rational
or irrational) is to be written or approximated as:

𝑎𝑎 = 𝑎𝑎1 + 1
𝑎𝑎2+ 1

𝑎𝑎3+ 1
𝑎𝑎4+ …

 (12)

Here every number (a2, a3, …) except ‘a1’ are positive integer. The continued function having
remarkable property based on Euclid’s division algorithm. Before that, it is important to
mention that every rational number has a finite sequence in its canonical form of the continued
fraction. But every irrational number has an infinite sequence in its canonical form of the
continued fraction. (Note: Every number is written uniquely in the form of C·F). Because in
every number (a2 + k), then (k = a3 + α), then (α = a4+ β, …) then (a1, a2, a3, …) are determined
using Euclid’s division algorithm for every (a2, a3, …) generated is unique sequence. The
advantages (C·F) are: (1) It use irrational number for the construction of random numbers (As
Fermat’s and Euclid’s are only limited to a rational number. We use this fact to generate large
sequence of random numbers without repetition), and (2) Irrational number is non-terminating,
non-repeating and generate large range of random numbers without repetition. Here we present
the proof for non-repeating, non-terminating sequence using the continued fraction.

1314 Sinha et al.: An Improved Pseudorandom Sequence Generator
and its Application to Image Encryption

Proof: Let as take a number ‘a’ divided by ‘b’ we get ‘a1’ as quotient and ‘b1’ as a reminder.

k = a
b

= a1 + b1
b

 (13)

Therefore, a = a1b + b1 (by Euclid’s). Now, let ‘b’ be written as a2 + b2
c

 for

some a2, b2, and c; b = a2c + b2, therefore k = (a1 + b1
a2+

b2
c

). If this process continues, then

we get a finite or infinite sequence of ai′s and bi′s. The ai′s and bi′s could be real or imaginary
values (we’ll only consider real values). Therefore every ‘k’ can be written as:

𝑘𝑘 = 𝑎𝑎1 + 𝑏𝑏1
𝑎𝑎2+

𝑏𝑏2
𝑎𝑎3+

𝑏𝑏3
…

 (14)

Let ‘I’ be an integral part of any number ‘r’. Therefore, I = ⌊r⌋ (Here, ⌊·⌋ is the greatest integer
function). Then, (f = r − I) (Here, ‘f’ is the fractional part), and (r = I + F). If (I1) be an integral
part of �1

f
�; 𝐼𝐼1 = �1

𝑓𝑓
�, Then, 𝑓𝑓2 = 1

𝑓𝑓
− 𝐼𝐼; Then again, = 𝐼𝐼 + 1

�1𝑓𝑓�
= 𝐼𝐼 + 1

𝐼𝐼1+𝑓𝑓2
 , so we write in the

form (C.F) as.

𝑟𝑟 = 𝐼𝐼 + 1
𝐼𝐼1+

1
𝐼𝐼2+

1
…

 (15)

Now, it is evaluated that (C·F) of 1
𝑓𝑓2

 which is required to get the canonical form of the
continued fraction. Now, based on that we have proposed the pseudorandom sequence
generator which generates sequence with continuous linear equation. The key feature of the
generator is based on the non-integral numbers. (Note: The number which cannot be
represented in the form of uniform continued fraction, then it is called an irrational number.
There are some of the universal systems are (i) Circle's circumference to its diameter (𝜋𝜋), (ii)
Euler's number (𝑒𝑒), and (iii) Square root of natural numbers except perfect squares). Let us see
the working of continued fraction for non-integral numbers. The mathematical represent for
the non-integral number (r = √3) is presented as: If, r = (I + f), (I= integral part and f =
fractional part). Then,

f = R – I = (√3 − 1) = 1
𝑓𝑓

= �√3+1
2
�

Now, repeating the process for 1
𝑓𝑓
; we get 1

𝑓𝑓
= 𝐼𝐼1 + 𝑓𝑓1 (Here, 𝐼𝐼1 = 1)

𝑓𝑓1 =
1
𝑓𝑓
− 𝐼𝐼1 = �

√3 + 1
2

− 1�
1
𝑓𝑓1

= √3 + 1.

Therefore, by continuing this manner we will get the C.F of √3. This process will explain the
nature of irrational numbers and provide approximated values for said problems. Now, for the
selection in-between rational and irrational numbers, it is clearly evidence that irrational
number provide better solution then rational for pseudorandom number generation. The
mathematical theory states that all the integer lies on the number line and the set of positive
integers counted from (1 to ∞) (goes on forever) and it is also called a set of natural numbers
(N = 1, 2, 3, …). In modulo system (a ≡ b mod m), where (a ≤ b < m) & (b ∈ N) gives only
‘m’ possibilities of remainder which has finite set of resides. This creates random sequence of
very low entropy, the introduction of decimal system in modulo system generates the long

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1315

range of sequence, and lead to the conclusion that between any two integers there are infinite
real numbers which increase the efficiency of the generator.

3.2. Proposed Generator
According to the mathematical foundation the proposed pseudorandom sequence generator
uses non-integral numbers with modular arithmetic to obtain the real numbers. The
mathematical model for the proposed generator is presented in Eq. 16.

Decimal output (Sdec) ≡ Xn+1 = (Xn × M × I) mod m (16)

Here Xn = Seed value [positive Real number], I = Non-Integral Real number with a sufficiently
long fractional part, M = Multiplier ‘Maddy Constant’ (any number ∈ I+ to increase the value
of seed), m = Moduli (any sizeable natural number). (Note. The value of multiplier (M) and
non-integral part (I), where (M × I), not an integer). Afterward, the generated sequence divides
by moduli (m) to get the integer value. The range of integers stands in between (0 to m), and
the conversion of the decimal (Sdec) to integer (Sdig) number takes place by using Eq. 17.

Integer output (Sdig) = �Xn+1
2
� (17)

Here [•] is the greatest integer function that generates the ‘Sdig’ floor integer value. The initial
condition for conversions should be Xn+1 > 2. The conversion of an integer number (Sdig) to
binary (Sbin) performs using Eq. 18.

Binary output (Sbin) = Xn+1 mod 2 (18)
The range of binary sequences lies in-between [0, 1]*. The proposed PRSG has a moduli value,
which means that the lesser the value of ‘m’, creates low the entropy of keyspace. In this paper,
the proposed generator uses the Turing machine computation, a probabilistic procedure to
generate random bits. (Probabilistic) poly (n), polynomial-time procedures halt in (worst-case)
time, and ‘n’ is the input length. The generator used the moduli (m) to generate the maximum
length of the sequence. Fig. 1 shows the block diagram for the proposed pseudorandom
number generator.

Fig. 1. Block diagram for proposed generator

1316 Sinha et al.: An Improved Pseudorandom Sequence Generator
and its Application to Image Encryption

Initialization: In this phase, the secret seed value ‘Xn’ is taken for the generator and
rest of the parameter has been assigned such as non-integral (I), multiplier (M), and moduli
(m).

Generation: Here, the proposed generator has produced three different sequence
patterns. The non-integral (I) is used to produce the decimal pattern (Sdec) using Eq. 16.
Whereas cryptographic applications use PRNG bits, the next step is to transition from decimal
to integer numbers. The generation of integer sequence is performed by dividing ‘Sdec’ with
moduli ‘m’ that produce integer sequence. Afterward, the integer sequence is converted into a
bit ‘Sbin’ by taking modulo operation.

Testing: It uses to test the randomness of the generated sequence. The NIST-STS,
DIEHARD, and ENT statistical tests have been performed on the generated sequence to detect
the uniformity of the random bits.

Encryption: The generated bit sequence uses for the cryptographic application. Here,
the additive cipher performs image encryption, where the random frame of (256×256) has
generated and XOR with the original image to produce the ciphered image.

Secret keyrand_bit = frame (256×256) ← Sbin
Imagescramb = secret keyrand_bit XOR Imageorig

Analysis: The analysis of the generator is performed based on the key sensitivity analysis. The
slight change in the secret seed value generates different sets of random sequences. Then the
generated sequence has been XORed with the image file. After that, the variance and
correlation analysis perform to detect the deviation in the output.
 Here we discussed several properties of the proposed generator which is required to
generate the random sequence.

Property 1. If moduli (m = 1, 2), the generated sequence lies between the intervals (0,
m). The integer output will be {[(Xn+1/2) mod m] < 2} and the binary sequence generated will
be {0}n or (sequence = 0, 0, 0, …) whatever the value of ‘M’ & ‘I’ will be chosen.

Property 2. If moduli (m = 3), then the generated sequence lies in between the range
of (0 < Xn+1/2 < 1.5). It observes that the generated output narrows down the generation and
produces a low entropy sequence.

Property 3. If moduli (m ≥ 4), then the generated sequence belongs to the interval of
[0, m]; the integer conversion (0 < Xn/2 < m/2). Moreover, this (Xn mod 2) will give the
sequence of 0’s and 1’s. (Note: It observes that the multiplier ‘M’ takes particularly large to
generate a more random sequence of 0’s and 1’s). In generated space, ‘S’ elements have been
repeated because the range of sequence correlates with modulo ‘m’. Therefore, the estimated
range of generated sequence is about (m × 106) for the proposed generator (1016 ∈ size of the
elements after decimal points in R-language). The elements in the generated space (S) have
been determining the period of the generator.

Property 4. If moduli (m) be the prime number and multiplier M = 1, then the length
of the generated period is up to (m×106). The secret seed ∈ (0, m×106) observes that the
generator does not depend on ‘m’ whether it is prime or not.

Property 5. If moduli m = power of (2) and multiplier M = 1, then the period of the
generated sequence is up to (m×106). It concluded that the generator is partially dependent on
moduli value for the generation of random sequence.

Property 6. If modulo (m ∈ I+), multiplier M = 1, and seed Xn = 1, based on the initial
parameters if the non-integral (I ∈ I+), the proposed generator acts similarly to the LCG, which
means that the range lies in between (S ≤ m).

Property 7. If moduli (m = 1) at this point, any traditional known generators do not
perform any operation. The proposed generator using the concept decimal number, which

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1317

means that the residue below ‘1’ has also existed; hence it is concluded that the proposed
generator produces a vast range of numbers (about 1016). The generated sequence has low
entropy, and it also exhibits that the proposed pseudorandom sequence generator overcomes
the weakness of previously known generators.

 Algorithm 1 presents the sequence of steps required to generate the random sequence.

Algorithm 1: Proposed pseudorandom sequence generator (KM-Generator)
01: Start
02: Select seed value (Xn)
03: Initialized non-integral (I), multiplier (M), moduli (m), and n.
04: for i = 1 to n, do
05: Generate: float Sdec ← Xn+1 = (Xn×M×I) mod m, {Sequence} ∈ {0 to m}
06: Convert: int Sdig ← as.integer (Sdec), integer output ∈ {0 to m}
07: Convert: int Sbin ← (Sdig mod 2), bits ∈ [0,1]*

08: end for
09: Stop

Randomness Evaluation
NIST-STS: The NIST statistical suite has been applied to the generated sequence for

randomness testing. The input parameters for testing are initialized based on the standard NIST
SP 800 [4], listed in Table 1. NIST implementation is performed on Linux Mint 19.1
environment and using R-studio ver.1.1.463 for random sequence generation.

Table 1. Input Parameters

Test Name Block Length
Block Frequency 128

Non-overlapping Template Matching 9
Overlapping Template Matching 9

Linear Complexity 500
Serial 16

Approximate Entropy 10

The NIST suite is a statistical package that consists of 16 tests and is used to examine the
randomness of generated sequences. These tests focus on different types of non-randomness
in the sequence [4]. The tests are as follows. (1) Frequency test is used to check the proportion
of 0’s and 1’s in the entire sequence, (2) Block frequency detect the proportion of ones in an
M-bit blocks, (3) Cumulative sum test focuses on maximal excursion of 0’s in the random
walk, (4) Runs test is used to determine the oscillation of 0’s and 1’s, which are too fast or too
slow, (5) Longest run of ones in a block test checked the irregularity of sequence length, (6)
Rank test check the linear dependencies among fixed length substring on the original sequence,
(7) FFT test detect the repetitive patterns that are near to each other, (8) Non-overlapping
template matching test detect too many occurrence of given non-periodic patterns, (9)
Overlapping template matching test identify the number of occurrences that are pre-specified
with target strings, (10) Universal statistical test detects the number of bits between matching
patterns, (11) Approximate entropy test compares the frequency of overlapping blocks of two
consecutive length, (12) Random excursion test describe the cycle of exactly k-visits in

1318 Sinha et al.: An Improved Pseudorandom Sequence Generator
and its Application to Image Encryption

random walk, (13) Random excursion variant test detects the deviations from expected number
of visit to various state in random walk, (14) Linear complexity test determine that the
sequence are complex enough to be consider random, (15) Serial 1 detect the frequency of
possible overlapping of m-bit patterns, and (16) Serial 2 detect the 2m bit overlapping patterns
in random sequence. For each statistical test, a set of P-values is obtained corresponding to the
produced sequence. Each test considers being successful if the P-value ≥ α, otherwise it is
called failure. The fixed significance level (α > 0.01) is required to accept the generated
sequence as random.
 The initial parameters for the proposed generator are as follows: seed (Xn) = 97645, I
= 1.732, M = 18349, and m = 232 - 1. We have generated 1000 samples of length (n = 106 bits)

and 100 samples of n = 8×107 bits). Table 2 presents the NIST results for two different sample
sizes.

Table 2. NIST SP 800-22 statistical test on generated sequence

S. No Statistical Test n = 106 bits n = 8×107 bits
p-values Results p-values Results

01 Frequency 0.9043 Passed 0.2144 Passed
02 Block Frequency 0.9903 Passed 0.3874 Passed
03 Cumulative sums 0.7889 Passed 0.2484 Passed
04 Runs 0.9650 Passed 0.5092 Passed
05 Longest runs 0.8600 Passed 0.4512 Passed
06 Rank Test 0.8032 Passed 0.3631 Passed
07 FFT 0.9075 Passed 0.5075 Passed
08 Non-overlapping Templates 0.9299 Passed 0.00045 Failed
09 Overlapping Templates 0.8820 Passed 0.00005 Failed
10 Universal 0.4288 Passed 0.3059 Passed
11 Approximate entropy 0.9835 Passed 0.3553 Passed
12 Random excursions (x = -4) 0.3591 Passed 0.4517 Passed
13 Random excursions variant (X = -9) 0.0990 Passed 0.3272 Passed
14 Linear Complexity 0.9589 Passed 0.5753 Passed
15 Serial 1 0.9453 Passed 0.6986 Passed
16 Serial 2 0.9210 Passed 0.5822 Passed

NIST-STS Result Interpretation
As we see the results in Table 2, the proposed generator has passed all the statistical tests for
106 bits. Nevertheless, for 8×107 bits, the generator has failed in Non-overlapping and
overlapping Template matching tests. It indicates that the test is not accurate for the high ‘n’
values [13].

Proportion Analysis: The test is used on certain portions of the sequence to determine
the randomness. For example, if we take 1000 sequences as a sample (m=1000) and then the
test has applied on it, where the level of significance (α) = 0.01, then it has suggested that 995
sequences have passed the test with (p-value ≥ 0.01), with the proportion of 995/1000=0.995.
This range for proper proportions has been determined by confidence interval (CI) using Eq.
19.

CI = p ± 3 �p (1 − p)/m (19)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1319

Here p = (1 - α), ‘α’ = level of significance, and ‘m’ = sample size. If the proportion falls
outside of this interval, then we say that the sample set is non-random. The NIST has
standardized the confidence p-value interval range between [0.9805, 0.9960].

Fig. 2. The Proportion of P-values

Fig. 2 presents the p-value proportion analysis results where the p-value proportion plot shows
that out of (16 tests), there are (4 tests) which having the (p-value < 0.9805) and the remaining
12 tests p-values proportion falls inside the interval, this shows that the sequence is sufficiently
large and passes the proportion test of uniformity.

 Distribution of p-value (Uniformity Analysis): The test uses for a visual illustration of
p-value proportion. The uniformity of p-values lies in-between [0, 1]. The distribution divides
into ten bins, where p-values lie within bins that have been counted and computed. The Chi-
square test (𝜒𝜒2) calculates the goodness-of-fit for each bin and checks the uniformity of the
distribution by using Eq. 20.

𝜒𝜒2 = ∑
�𝐹𝐹𝑖𝑖−

𝑠𝑠
10�

2

� 𝑠𝑠10�
10
𝑗𝑗=1 (20)

Here Fi = number of p-values in each ‘j’ bin, and s = size of the sample. The uniformity of p-
values has determined by threshold value which calculates using Chi-square. The test results
must be greater than the threshold value to determine uniformity. The threshold p-value was
calculated using p-valuesT = igamc (9/2, 𝜒𝜒2), where (p-valuesT ≥ 10-4) for uniform distribution.

Fig. 3. Histogram of P-values

Fig. 3 represents the uniformity analysis of the P-values for six different statistical tests. The
distribution of the p-value divides into ten bin intervals. Here we obtain P-valuesT = 0.071620,
which is greater than 10-4, indicating the uniformity of p-values in each distribution bin.

0

0.5

1

1.5

0.988
0.989

0.99
0.991
0.992

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pr
op

or
tio

ns

p-
va

lu
es

NIST Tests

P-value Proportion Plot

Upper Confidence Inteval Lower Confidence Inteval Tests

0

10

1 2 3 4 5 6 7 8 9 10Fr
eq

ue
nc

y
C

ou
nt

s

P-values

P-values of various Tests

Block Frequency Frequency Test Cumalative Sum
Longest Run Linear Complexity Serial 1

1320 Sinha et al.: An Improved Pseudorandom Sequence Generator
and its Application to Image Encryption

DIEHARD Test: The package contains 19 statistical tests for randomness. The tests
applied for the same generated sequences. The acceptable range of entire suite passes with a
95% confidence interval for p-values between 0.0001 and 0.9999, and this method was used
for our testing. The test description is summarized on the site
(https://sites.google.com/site/astudyofentropy/background-information/the-tests/dieharder-
test-descriptions).The Diehard test results are summarized in Table 3.

Table 3. DIEHARD statistical test

S. No Statistical Test n = 106 bits
p-values Results

1 Birthday spacing 0.8016 Passed
2 Overlapping 5-permutation 0.0529 Passed
3 Binary rank (32 × 32) 0.7342 Passed
4 Binary rank (6 × 8) 0.7749 Passed
5 Bitstream 0.5905 Passed
6 OPSO 0.2735 Passed
7 OQSO 0.4123 Passed
8 DNA 0.0566 Passed
9 Stream count-the-ones 0.8822 Passed

10 Byte count-the-ones 0.9691 Passed
11 Parking lot 0.4213 Passed
12 Minimum distance 0.8743 Passed
13 D spheres 0.5438 Passed
14 Squeeze 0.5621 Passed
15 Overlapping sums 0.0391 Passed
16 Runs up 0.9965 Passed
17 Runs down 0.3397 Weak
18 Craps 0.7114 Passed
19 K-S Test 0.9441 Passed

ENT Test: It is another statistical test for the randomness evaluation as follows- (1)
Entropy Test measures the information density of generated sequence, (2) Optimum
compression measures the sequence based on information density. If the sequence is highly
dense, it is unlikely to be reduced in size, (3) Chi-square distribution is used to measure the
randomness of data. The absolute number and percentage indicate the frequency of truly
random sequence, (4) Arithmetic mean value test simply summing the results all the bytes
(127.5 = random), (5) Monte Carlo value for Pi estimation is uses the six bytes sequence within
a square. If the distance of the randomly-generated point is less than the radius of a circle
inscribed within the square, it is considered a “hit”. The percentage of hits can be used to
calculate the value of Pi, and (6) Serial correlation coefficient Test is used to measure the
quantity each byte depends upon the previous byte, and the values will be close to zero. Table
4 presents the results for all the tests from ENT.

https://sites.google.com/site/astudyofentropy/background-information/the-tests/dieharder-test-descriptions
https://sites.google.com/site/astudyofentropy/background-information/the-tests/dieharder-test-descriptions

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1321

Table 4. ENT statistical test
S. No ENT test Results

1. Entropy 7.99994 bits per byte
2. Optimum compression (OC) OC would reduce the size of this 2019999-byte

file by 0 percent.
3. Chi-Square Distribution The Chi-square distribution for 2019999

samples is 311.19 and randomly would exceed
this value 97.97 percent of the time.

4. Arithmetic mean value 126.489 (127.5 = random)
5. Monte Carlo ‘π’ estimation 3.145120754 (error 0.08 percent)
6. serial correlation coefficient -0.00092 (totally uncorrelated = 0.0)

Performance Analysis with Image Encryption
In this section, the proposed generator uses for image encryption. Here matrix ‘A’ has been
created using the proposed generator, similar to the original image dimension (256 × 256)
based on the floating point standard of IEEE for double variables (IEEE Computer Society,
2008). Then the XOR operation is used in between the original image and matrix (A). The
encryption process used the sort-index method to shuffle the pixel positions. The generation
of matrix ‘A’ with original key (K1) is given as Xn = 85289, I = 1.732, M = 95124, and m =
232 - 1, and generate wrong key (K2) with small change in M = 95124 + 10-3.

(a) (b) (c)

(d) (e) (f)

Fig. 4. The results of image encryption using transposition of pixels

Fig. 4 shows the complete cycle of the cameraman image with the original and wrong key.
Fig. 4(a) presents the original cameraman image. Fig. 4(b) represents the encrypted image
using a secret key, ‘K1’. Fig. 4(c) shows the decrypted image. Fig. 4(d) presents the decryption
using the wrong key ‘K2’, Fig. 4(e) presents the encryption using the wrong key ‘K2’, and
Fig. 4(f) represents the difference between ‘K1’ and ‘K2’. It observes that the proposed
generator is extremely sensitive towards its input values, and it does not reveal any information,
which shows good coherence with image encryption.

1322 Sinha et al.: An Improved Pseudorandom Sequence Generator
and its Application to Image Encryption

 Speed Analysis and Comparison: The comparison of encryption time is presented for
cameraman images. The decryption process is just the inverse of encryption, and it requires
equivalent time. Here, the proposed generator is compared with the traditional cryptographic
algorithm and presented in Table 5.

Table 5. Comparison of encryption time

Image Technique Time (Unit: Second)
 AES 2.472704

Cameraman (256 × 256)
Ref [43] 0.005362
Ref [44] 0.025781

Proposed Generator 0.006542

 Variance Analysis: It uses to check the uniformity of pixels in the image. According to
[38], the quality of the key determines using the variance analysis on encrypted images. The
encryption performs by creating a slight change in the input parameter of the original key (K)
that creates five different keys (Ki, Kj, Kx, Ky, and Kz). If the variance of two encrypted images
is closer to each other, it indicates the high uniformity in the ciphered image. Eq. 21 represents
the mathematical formulation for variance analysis.

�
var(P) = 1

256
 ∑ (Pi − P�)2255

i=0

P� = 1
256

∑ Pi255
i=0

 (21)

Here the pixel vector is denoted by P, ‘i’ is the pixel value, P� = mean, and Pi is the ith pixel
value of the pixel vector. The original image encrypts with different key sets that slightly
change the parameters, and then the histogram variance has been computed. The standard
image is obtained from the site (https://sipi.usc.edu/database/). Table 6 presents the variance
values of the different encrypted images.

Table 6. The variance analysis of small change among the secret key

Image Plane Image K Ki Kj Kx Ky Kz
5.1.11 1094 5446 5481 5467 5472 5438 5446
5.1.12 3274 5459 5479 5471 5438 5462 5465
5.1.13 5735 5439 5463 5476 5471 5443 5439
5.1.14 1795 5469 5478 5461 5475 5435 5441
Lena 2289 5453 5463 5471 5479 5436 5469

Cameraman 4720 5466 5479 5449 5481 5463 5472

It observes that the variance value of encrypted images using different key sets is very close
to the image encrypted with the original key. It implies that the proposed generator is highly
sensitive to its initial parameters and uniformly distributed after encryption.

 Correlation Coefficient Analysis: It uses to detect the deviation between two adjacent
pixels. Here 3000 random pixels pairs are selected from the original and ciphered image to
conduct the test—the correlation concept using the mean and variance of adjacent pixels
calculated using Eq. 22.

Covx,y = ∑ (xi−x�)(yi−y�)n
i=1

�∑ (xi−x�)2n
i=1 ∑ (yi−y�)2n

i=1

 (22)

Here x� = �1
n
�∑ xin

i=1 , and y� = �1
n
�∑ yin

i=1 . Whereas (x) and (y) are two adjacent pixels of
horizontal, vertical, and diagonal direction, ‘n’ is the total number of pixels. The correlation

https://sipi.usc.edu/database/

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1323

coefficient of adjacent pixels is maximum (nearer to 1) for the original image, whereas
minimum (nearer to 0) for the encrypted image. Furthermore, the results are prepared based
on three different directions (horizontal, vertical, and diagonal), listed in Table 7.

Table 7. The Comparison of the Correlation Coefficient

Direction Proposed Generator Ref.
[1]

Ref.
[10]

Ref.
[11]

Ref.
[33]

Ref.
[35]

Ref.
[41] Plane

Image
Cipher
image

Horizontal 0.9417 -0.0021 - 0.0127 0.0005 0.0004 -0.0045 0.0096 0.0101
Vertical 0.9616 -0.0028 - 0.0242 -0.0013 0.0008 0.0004 0.0342 0.0044
Diagonal 0.9243 -0.0026 - -0.0011 -0.0007 -0.0194 0.0205 0.0006

Here the results of the proposed generator have been compared with various chaotic-based
systems. The experimental results show that the plane image values are nearer to ‘1’, whereas
the ciphered images values are nearer to ‘0’. The results of the proposed generator are better
than the methods in [1, 10, 11, 35] and comparable with those methods in [33, 41].

Differential Attack Analysis: It uses to detect the single-pixel change in the encrypted
image. Two different mathematical models measure the detection (i) Number of Pixels Change
Rate (NPCR) is used to check the percentage change in pixels, and (ii) Unified Average
Change Intensity (UACI) is used to detect the average change of intensity of the pixel, and
calculated by using Eq. 23 and Eq. 24.

Percentage pixel (NPCR) =
∑ ∑ P(i,j)k

j=1
n
i=1

n × k
× 100 (23)

Percentage intensity (UACI) =
∑ ∑ |C1(i,j)− C2(i,j)|k

j=1
n
i=1

255 × n × k
× 100 (24)

The analysis required two encrypted images and ‘C1’ and ‘C2’ generated from two original
images with only a one-pixel difference for analysis. Here we define 2D array D(i, j) having
the same size as the original image. Now to detect the one-bit change, if (C1(i, j) = C2(i, j)),
then D(i, j) = ‘1’ or else it is ‘0’, this analysis illustrates that the slight change in plaintext sense
in the encrypted image. Table 8 presents the comparison of NPCR and UACI for various
traditional and proposed algorithms. Here, we have chosen the random pixel position (150, 36)
on the Lena image and converted the pixel from 126 to 125. The standard statistical value for
NPCR > 0.995 and UACI > 0.333 for the acceptance of results.

Table 8. The comparison of NPCR and UACI
Test Ref.

[1]
Ref.
[10]

Ref.
[11]

Ref.
[33]

Ref.
[35]

Ref.
[41]

Proposed
Generator

NPCR 99.65 99.63 99.57 83.45 99.82 99.13 99.87
UACI 33.60 33.40 33.36 34.68 33.46 28.72 33.47

Here, the proposed generator values are acceptable and match those methods [1, 10, 11, 33,
35, 41]. Both NPCR and UACI value confirms that the proposed generator resist the
differential attack.
 Entropy Analysis: It uses to measure the degree of uncertainty in the random variable.
Theoretically, the entropy of a grayscale image is equal to (28 ≈ 256) when all the pixels
distributes uniformly. If the encrypted value is close to the 8Sh (Shannon), it is highly robust
against attacks. The mathematical formulation for entropy ‘E’ is represented by Eq. 25.

E = −∑ pi log2(pi)n
i=0 (25)

1324 Sinha et al.: An Improved Pseudorandom Sequence Generator
and its Application to Image Encryption

Here ‘pi’ is the probability of occurrence of gray pixel value ‘i’. The probability of each pixel
is 1/256 and lies in the range of [0, 255], which uniformly distributed throughout the region.
To create maximum obscuring in the image, maximize the entropy value. Table 9 presents the
comparison of various traditional and proposed generator-based encryption on Lena images.
The standard value of entropy (E ≤ 8) for the 256×256 grayscale image determines the
randomness in the image.

Table 9. The comparisons of entropy value

Technique Entropy value
Ref. [1] 7.9901
Ref. [10] 7.9971
Ref. [33] 7.9972
Ref. [35] 7.9984
Ref. [41] 7.9970
Proposed Generator 7.9974

It observes that the proposed generator-based encryption has produced acceptable and better
results than those in [1, 10, 33, 41]. Also, the result obtained is slightly lower than the method
in [35]. It concludes that the grayscale pixels are distributed uniformly in encrypted images.

2.4. Comparison
In this section, the proposed generator compares with various traditional algorithms. The
results prepare using the p-value of the NIST test. Table 10 presents the comparisons of
traditional and proposed generators for 106 bits.

Table 10. The Comparison of NIST-STS P-values of the various generator for 106 bits

Statistical
Test

P-values
Ref.
[4]

Ref.
[4]

Ref.
[6]

Ref.
[17]

Ref.
[19]

Ref.
[31]

Ref.
[32]

Ref.
[37]

Proposed
Generator

Frequency 0.739 0.534 0.326 0.203 0.934 0.434 0.539 0.709 0.904
Block
Frequency

0.122 0.350 0.763 0.888 0.886 0.308 0.647 0.886 0.990

Cumulative
sums

0.384 0.534 0.375 0.352 0.928 0.185 0.596 0.975 0.788

Runs 0.213 0.534 0.902 0.248 0.709 0.677 0.949 0.325 0.965
Longest runs 0.122 0.534 0.311 0.160 0.951 0.696 0.041 0.508 0.860
Rank Test 0.213 0.350 0.629 0.534 0.663 0.677 0.885 0.330 0.803
FFT 0.739 0.350 0.184 0.017 0.907 0.397 0.188 0.116 0.907
Non-
overlapping
Templates

0.479 0.666 0.449 0.353 0.743 0.814 0.105 0.706 0.929

Overlapping
Templates

0.350 0.350 0.107 0.885 0.997 0.352 0.086 0.219 0.882

Universal 0.213 0.017 0.188 0.116 0.605 0.680 0.902 0.016 0.428
Approximate
entropy

0.991 0.739 0.170 0.929 0.955 0.480 0.436 0.998 0.983

Random
excursions (x =
-4)

0.852 0.823 0.609 0.473 - 0.010 0.128 0.655 0.359

Random
excursions
variant (X = -
9)

0.419 0.654 0.133 0.512 - 0.844 0.711 0.806 0.099

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1325

Linear
Complexity

0.213 0.534 0.405 0.386 0.975 0.100 0.996 0.638 0.958

Serial 1 0.365 0.739 0.998 0.950 0.998 0.161 0.875 0.845 0.945
Serial 2 0.413 0.634 0.997 0.672 0.982 0.032 0.946 0.794 0.921

It observes that p-values of the proposed generator were almost nearer to ‘1’ for the maximum
tests and passed all the NIST tests of randomness. It also found that the obtained values are
better than the generators in [4, 6, 17, 19, 31, 32, 37]. It also shows that the generator in [19]
has failed in two different tests (Random Excursions and Random Excursions Variant test).
 Speed-Space Analysis: The analysis uses to evaluate the performance of the proposed
generator. Table 11 presents a comparison of traditional and proposed generators.

Table 11. The comparison of Traditional and Proposed PRSGs

Generator Operation Length Parameters Space
(Mbits)

Speed
(Mbits/

sec)
Ref. [4] Moduli m = 232 106 Xn, a, c, and m 13.4 0.0148
Ref. [4] Moduli m = 232 106 Xn, m = p × p 14.2 0.0011

Ref. [19] Moduli m = 232 106 Xj, K1, K2, M = (N + p), n 17.1 0.0063
Ref. [33] XOR 106 x1y1, x1z1, x2y2, x2z2, x3y3,

x3z3, x4y4, x4z4, y5z5
- 0.3256

Ref. [41] XOR and
Moduli m = 232

106 S, m = p × p - 0.3900

Proposed
Generator

Moduli m = 232 106 Xn, I, M, and m 15.1 0.0065

We observe that the proposed generator has better speed and space than the traditional
generators, which suggests [4, 19]. Also, the result is comparable with the methods of [33, 41].

 Keyspace Analysis: The essential part of PRNGs is to prevent brute-force attacks. In
addition to the secret key, the proposed generator initial parameters are integer values (Xn) and
‘M’, ‘I’ a non-integral number. Considering the floating point standard of IEEE for double
variables (IEEE Computer Society, 2008), every double variable has precision of about 10-15.
The precision of generated sequence with initial parameters is (1020)4, while the precision of
parameter ‘m’ is 264 ≈ 1019, and the generator uses the floating-point standards, so the precision
sequence length after the decimal is (1015), the keyspace size will be (1020)4 ×1019 ×1015 = 10114
≈ 2380. Table 12 presents the keyspace comparison of several random number generators.

Table 12. Keyspace comparison

Techniques Keyspace
Ref. [10] 2199
Ref. [11] > 2312
Ref. [27] 2339
Ref. [33] 2760
Ref. [34] 2149
Ref. [35] > 2252
Ref. [41] 216

Proposed Generator 2380

1326 Sinha et al.: An Improved Pseudorandom Sequence Generator
and its Application to Image Encryption

The keyspace of the proposed generator is better than other well-known generators. It observes
that the keyspace depends on the key size and possible values in each key. Hence, it observes
that the sequence generated by the proposed generator is large enough to resist brute-force
attacks.

Conclusion
In the paper, an image encryption scheme is presented based on the improved pseudorandom
sequence generator using modular arithmetic systems with non-integral numbers, which also
increases the efficiency of the proposed generator. The proposed generator solves the problem
of the non-uniform distribution of sequence. The NIST-STS, DIEHARD, and ENT statistical
test have been performed on the sequence to determine the randomness of generated sequence.
The experimental results and theoretical analysis show that the proposed generator has many
advantages, such as sensitivity to initial values, robustness, and resistance against common
attacks. The performance of the proposed generator is measured using speed-space and
keyspace analysis. Our intent in the future has to use the proposed generator with various
cryptographic algorithms for key generation and padding. Furthermore, the proposed generator
is applied to encrypt images for secure transmission over the Internet.

References
[1] Benlashram, M. Al-Ghamdi, R. AlTalhi, and P. Kaouther Laabidi, “A novel approach of image

encryption using pixel shuffling and 3D chaotic map,” J. Phys. Conf. Ser., vol. 1447, p. 012009,
Jan. 2020. Article (CrossRef Link)

[2] A. Hasnat, D. Barman, and S. Sarkar, “Color image share cryptography: a novel approach,” J.
Intell. Fuzzy Syst., vol. 36, no. 5, pp. 4491–4506, May 2019. Article (CrossRef Link)

[3] A. Lavasani, and T. Eghlidos, “Practical next bit test for evaluating pseudorandom sequences,”
Sci. Iran., vol. 16, pp. 19-33, June 2009. Article (CrossRef Link)

[4] A. Rukhin, J. Sota, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks,
A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number
generators for cryptographic applications,” NIST, 2000. Article (CrossRef Link)

[5] B. R. Johnson, and D. J. Leeming, “A study of the digits of π, e and certain other irrational
numbers,” Sankhya: Indian J. Stat., vol. 52, no. 2, 183-189, 1990. Article (CrossRef Link)

[6] H. Luo and B. Ge, “Image encryption based on Henon chaotic system with nonlinear term,”
Multimed. Tools. Appl., vol. 78, no. 24, pp. 34323–34352, Aug. 2019. Article (CrossRef Link)

[7] D. H. Bailey, “A Pseudorandom Number Generator Based on Normal Numbers,” Office of
Scientific and Technical Information (OSTI), Berkeley, CA, USA, Tech. Rep. LBNL-57489, Dec.
2004. Article (CrossRef Link)

[8] D. Lambić, “Security analysis and improvement of a block cipher with dynamic S-boxes based on
tent map,” Nonlinear Dyn., vol. 79, no. 4, pp. 2531–2539, 2015. Article (CrossRef Link)

[9] D. Shanks and J. W. Wrench, “Calculation of e to 100,000 Decimals,” Math. Comput., vol. 23, no.
107, pp. 679-680, Jul. 1969. Article (CrossRef Link)

[10] H. Huang, S. Yang, and R. Ye, “Efficient symmetric image encryption by using a novel 2D chaotic
system,” IET Image Process., vol. 14, no. 6, pp. 1157–1163, Apr. 2020. Article (CrossRef Link)

[11] H. Huang and S. Yang, “Image Encryption Technique Combining Compressive Sensing with
Double Random-Phase Encoding,” Math. Probl. Eng., vol. 2018, pp. 1–10, 2018.
Article (CrossRef Link)

[12] F. Özkaynak and S. Yavuz, “Security problems for a pseudorandom sequence generator based on
the Chen chaotic system,” Comput. Phys. Commun., vol. 184, no. 9, pp. 2178–2181, Sep. 2013.
Article (CrossRef Link)

http://dx.doi.org/10.1088/1742-6596/1447/1/012009
http://dx.doi.org/10.3233/jifs-179002
https://www.sid.ir/en/journal/ViewPaper.aspx?id=152546
http://dx.doi.org/10.6028/nist.sp.800-22
http://www.jstor.org/stable/25052638
http://dx.doi.org/10.1007/s11042-019-08072-4
http://dx.doi.org/10.2172/860344
http://dx.doi.org/10.1007/s11071-014-1830-2
http://dx.doi.org/10.2307/2004403
http://dx.doi.org/10.1049/iet-ipr.2019.0551
http://dx.doi.org/10.1155/2018/6764052
http://dx.doi.org/10.1016/j.cpc.2013.04.014

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1327

[13] İ. Öztürk and R. Kılıç, “A novel method for producing pseudo random numbers from differential
equation-based chaotic systems,” Nonlinear Dyn., vol. 80, no. 3, pp. 1147–1157, Feb. 2015.
Article (CrossRef Link)

[14] I. Peterson, “Pi Wars: Dueling Supercomputers,” Science News, Wiley, vol. 131, no. 8, p. 118, Feb.
1987. Article (CrossRef Link)

[15] J. Dutka, “The Square Root of 2 to 1,000,000 Decimals,” Math. Comput., vol. 25, no. 116, pp.
927-930, Oct. 1971. Article (CrossRef Link)

[16] J. Ferreirós, “Gauss and the Mathematical Background to Standardisation,” HoST - Journal of
History of Science and Technology, vol. 14, no. 1, pp. 32–51, Jun. 2020. Article (CrossRef Link)

[17] J. Peng, W. Yang, S. Jin, S. Pang, D. Tang, J. Bai, D. Zhang, “Image Encryption Based on
Fractional-order Chen Hyperchaotic System,” in Proc. of 15th IEEE Conference on Industrial
Electronics and Applications (ICIEA), Kristiansand, Norway, pp. 213-217, Nov 2020.
Article (CrossRef Link)

[18] L. C. Meiser, J. Koch, P. L. Antkowiak, W. J. Stark, R. Heckel, and R. N. Grass, “DNA synthesis
for true random number generation,” Nat. Commun., vol. 11, no. 1, pp. 1-9, Nov. 2020.
Article (CrossRef Link)

[19] L. Milinkovic, M. Antic, and Z. Cica, “Pseudorandom number generator based on irrational
numbers,” in Proc. of 10th International Conference on Telecommunication in Modern Satellite
Cable and Broadcasting Services (TELSIKS), Nis, Serbia, pp. 719-722, Oct. 2011.
Article (CrossRef Link)

[20] M. A. Ivanov, I. G. Konnova, E. A. Salikov, and M. A. Stepanova, “Obfuscation of logic schemes
of pseudorandom number generators based on linear and non-linear feedback shift registers,”
Bezopasnost informacionnyh tehnology, vol. 28, no. 1, pp. 74–83, Jan. 2021.
Article (CrossRef Link)

[21] M. Bellare, R. Guérin, and P. Rogaway, “XOR MACs: New Methods for Message Authentication
Using Finite Pseudorandom Functions,” in Proc. of CRYPTO 1995: Advances in Cryptology -
CRYPT0’ 95, pp. 15–28, 1995. Article (CrossRef Link)

[22] M. Bullynck, “Modular arithmetic before C.F. Gauss: Systematizations and discussions on
remainder problems in 18th-century Germany,” Hist. Math., vol. 36, no. 1, pp. 48–72, Feb. 2009.
Article (CrossRef Link)

[23] O. Laia, E. M. Zamzami, and Sutarman, “Analysis of Combination Algorithm Data Encryption
Standard (DES) and Blum-Blum-Shub (BBS),” J. Phys. Conf. Ser., vol. 1898, no. 1, p. 012017,
Jun. 2021. Article (CrossRef Link)

[24] P. G. Anderson, “A Fibonacci-Based Pseudorandom Number Generator,” Applications of
Fibonacci Numbers, vol. 4, pp. 1-8, July 30 - Aug 3, 1991. Article (CrossRef Link)

[25] R. P. Agarwal and H. Agarwal, “Origin of Irrational Numbers and Their Approximations,”
Comput., vol. 9, no. 3, p. 29, Mar. 2021. Article (CrossRef Link)

[26] S. Chakraborty, “On Why and What of Randomness,” arXiv:0902.1232 [cs], February 2009.
Article (CrossRef Link)

[27] S. Zhu, C. Zhu, and W. Wang, “A New Image Encryption Algorithm Based on Chaos and Secure
Hash SHA-256,” Entropy, vol. 20, no. 9, p. 716, Sep. 2018. Article (CrossRef Link)

[28] T. W. Judson, Abstract Algebra: Theory And Applications, USA: Orthogonal Publishing, 2020.
[29] V. Kapur, S. Teja Paladi, and N. Dubbakula, “Two Level Image Encryption using Pseudo Random

Number Generators,” Int. J. Comput. Appl., vol. 115, no. 12, pp. 1-4, Apr. 2015.
Article (CrossRef Link)

[30] W. A. Beyer, N. Metropolis, and J. R. Neergaard, “Square Roots of Integers 2 to 15 in Various
Bases 2 to 10: 88062 Binary Digits or Equivalent,” Math. Comput., vol. 23, no. 107, p. 679, Jul.
1969. Article (CrossRef Link)

[31] W. Hao-Xiang, C. Guo-Liang, M. Sheng, T. Li-Xin, “Nonlinear feedback control of a novel
hyperchaotic system and its circuit implementation,” Chin. Phys. B, vol. 19, no. 3, p. 030509, Mar
2010. Article (CrossRef Link)

http://dx.doi.org/10.1007/s11071-015-1932-5
http://dx.doi.org/10.2307/3971556
http://dx.doi.org/10.2307/2004359
http://dx.doi.org/10.2478/host-2020-0003
http://dx.doi.org/10.1109/iciea48937.2020.9248115
http://dx.doi.org/10.1038/s41467-020-19757-y
http://dx.doi.org/10.1109/telsks.2011.6143212
http://dx.doi.org/10.26583/bit.2021.1.06
http://dx.doi.org/10.1007/3-540-44750-4_2
http://dx.doi.org/10.1016/j.hm.2008.08.009
http://dx.doi.org/10.1088/1742-6596/1898/1/012017
http://dx.doi.org/10.1007/978-94-011-3586-3_1
http://dx.doi.org/10.3390/computation9030029
https://arxiv.org/abs/0902.1232
http://dx.doi.org/10.3390/e20090716
http://dx.doi.org/10.5120/20200-2446
http://dx.doi.org/10.2307/2004402
http://dx.doi.org/10.1088/1674-1056/19/3/030509

1328 Sinha et al.: An Improved Pseudorandom Sequence Generator
and its Application to Image Encryption

[32] W. Sen, C. Li, L. Qin, W. Gang, “Chaotic phenomena in Josephson circuits coupled quantum
cellular neural networks,” Chin. Phys., vol. 16, no. 9, pp. 2631-4, Sep 2007.
Article (CrossRef Link)

[33] X. Chen, S. Qian, F. Yu, Z. Zhang, H. Shen, Y. Huang, S. Cai, Z. Deng, Y. Li, and S. Du,
“Pseudorandom Number Generator Based on Three Kinds of Four-Wing Memristive
Hyperchaotic System and Its Application in Image Encryption,” Complexity, vol. 2020, pp. 1–17,
Dec. 2020. Article (CrossRef Link)

[34] X. Wang, X. Zhu, X. Wu, and Y. Zhang, “Image encryption algorithm based on multiple mixed
hash functions and cyclic shift,” Opt. Lasers Eng., vol. 107, pp. 370–379, Aug. 2018.
Article (CrossRef Link)

[35] X.-Y. Wang, S.-X. Gu, and Y.-Q. Zhang, “Novel image encryption algorithm based on cycle shift
and chaotic system,” Opt. Lasers Eng., vol. 68, pp. 126–134, May. 2015. Article (CrossRef Link)

[36] Y. Liu, L. Y. Zhang, J. Wang, Y. Zhang, and K. Wong, “Chosen-plaintext attack of an image
encryption scheme based on modified permutation–diffusion structure,” Nonlinear Dyn., vol. 84,
no. 4, pp. 2241–2250, Feb. 2016. Article (CrossRef Link)

[37] S. Tariq, M. Khan, A. Alghafis, and M. Amin, “A novel hybrid encryption scheme based on
chaotic Lorenz system and logarithmic key generation,” Multimed. Tools. Appl., vol. 79, no. 31–
32, pp. 23507–23529, Jun. 2020. Article (CrossRef Link)

[38] Y.-Q. Zhang and X.-Y. Wang, “A symmetric image encryption algorithm based on mixed linear–
nonlinear coupled map lattice,” Inf. Sci., vol. 273, pp. 329–351, Jul. 2014. Article (CrossRef Link)

[39] Y.-S. Jeong, K. Oh, C.-K. Cho, and H.-J. Choi, “Pseudo Random Number Generation Using
LSTMs and Irrational Numbers,” in Proc. of IEEE International Conference on Big Data and
Smart Computing (BigComp), Shanghai, China, pp. 541 – 544, Jan. 2018. Article (CrossRef Link)

[40] Z. Man, J. Li, X. Di, X. Liu, J. Zhou, J. Wang, and X. Zhang, “A novel image encryption algorithm
based on least squares generative adversarial network random number generator,”
Multimed. Tools. Appl., vol. 80, no. 18, pp. 27445–27469, May 2021. Article (CrossRef Link)

[41] T. Sivakumar, R. Venkatesan, “A Novel Image Encryption Using Calligraphy Based Scan Method
and Random Number,” KSII Transactions on Internet and Information Systems, vol. 9, no. 6, pp.
2317-2337, Jun. 2015. Article (CrossRef Link)

[42] J. B. Fraleigh, A First Course in Abstract Algebra, USA, United States: Pearson, 2014.
[43] F. Sun and Z. Lv, “A secure image encryption based on spatial surface chaotic system and AES

algorithm,” Multimed Tools Appl., vol. 82, pp. 3959-3979, 2022. Article (CrossRef Link)
[44] A. Arab, M. J. Rostami, and B. Ghavami, “An image encryption method based on chaos system

and AES algorithm,” J of Supercom., vol. 75, no. 10, pp. 6663–6682, May 2019.
Article (CrossRef Link)

[45] K. Kordov and S. Zhelezov, “Steganography in color images with random order of pixel selection
and encrypted text message embedding,” PeerJ Comput. Sci., vol. 7, p. e380, Jan. 2021.
Article (CrossRef Link)

http://dx.doi.org/10.1088/1009-1963/16/9/022
http://dx.doi.org/10.1155/2020/8274685
http://dx.doi.org/10.1016/j.optlaseng.2017.06.015
http://dx.doi.org/10.1016/j.optlaseng.2014.12.025
http://dx.doi.org/10.1007/s11071-016-2642-3
http://dx.doi.org/10.1007/s11042-020-09134-8
http://dx.doi.org/10.1016/j.ins.2014.02.156
http://dx.doi.org/10.1109/bigcomp.2018.00091
http://dx.doi.org/10.1007/s11042-021-10979-w
http://dx.doi.org/10.3837/tiis.2015.06.020
http://dx.doi.org/10.1007/s11042-021-11690-6
http://dx.doi.org/10.1007/s11227-019-02878-7
http://dx.doi.org/10.7717/peerj-cs.380

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1329

Keshav Sinha received a B.E. degree in Computer Science and Engineering and an M.E.
degree in Software Engineering. As a research scholar, he is doing a Ph.D. from BIT, Mesra,
in Cryptography and Network security. His current research interest is cryptography and
network security which provide flexibility in data security.

Partha Paul received the B.E (CS) and M.E (CS) degrees from Moscow State University,
Russia, in 1998 & 1999, respectively. He did his Ph.D. degree from Birla Institute of
Technology, Mesra, Ranchi, India, in 2014. He is currently an Associate Professor in the
Department of Computer Science & Engineering, Sarala Birla University, Ranchi, India. He
has authored or co-authored more than 40 Papers published in various International Journals
and Conference Proceedings. His research interests include Cryptography and Network
Security, Artificial Intelligence, Cloud Computing, and Traffic Grooming in Optical WDM.

Amritanjali received B.E. degree in Computer Science in 2000, M.E. degree in Software
Engineering in 2005 and Ph.D. in Engineering in 2014 from the Birla Institute of Technology,
Mesra, Ranchi. After completing her B.E., she worked as Software Engineer at Computer
Associates-TCG S/W Pvt. Ltd. where she was responsible for software development and
maintenance in various industrial projects. In 2006, she joined the Birla Institute of
Technology, Mesra, as Assistant Professor in Computer Science and Engineering. Her
research interest is in Wireless Networks, Parallel Computing, Computational Biology, and
Machine Learning.

	Abstract
	2.1. Random Number Generator
	2.2. Pseudorandom Number Generator
	2.3. PRNG Classification
	2.3.1. Modulo Arithmetic System
	2.3.2. Non-Integral Number
	2.3.3. Chaotic System
	2.3.4. Traditional Generators

	3.1. Mathematical Foundation
	3.2. Proposed Generator

	References

