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Abstract 

 
This paper proposes an improved Pseudorandom Sequence Generator (PRSG) based on the 
concept of modular arithmetic systems with non-integral numbers. The generated random 
sequence use in various cryptographic applications due to its unpredictability. Here the 
mathematical model is designed to solve the problem of the non-uniform distribution of the 
sequences. In addition, PRSG has passed the standard statistical and empirical tests, which 
shows that the proposed generator has good statistical characteristics. Finally, image 
encryption has been performed based on the sort-index method and diffusion processing to 
obtain the encrypted image. After a thorough evaluation of encryption performance, there has 
been no direct association between the original and encrypted images. The results show that 
the proposed PRSG has good statistical characteristics and security performance in 
cryptographic applications. 
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1. Introduction 

An adversary performs various types of attacks on cryptography applications. However, 
various cryptographic algorithms require random numbers to generate secret keys, nonce, and 
session keys. The role of the random sequence is to withstand various attacks and provide 
security to the data. The cryptographic algorithms divide into (i) Symmetric and (ii) 
Asymmetric encryption. A random number is required for key generation in symmetric 
encryption, whereas asymmetric encryption requires random bits for padding with the original 
data. However, hash functions require random numbers for indexing and mapping to provide 
data integrity and authenticity. This paper concentrates on pseudorandom sequence generation, 
tests the generated sequence with NIST-STS, and then is used to sort-index based image 
encryption. The encryption using random numbers requires four factors such as (i) Re-
generable, (ii) Statistically Independent, (iii) Uniformly Distributed, and (iv) Storage Efficient. 
The pseudorandom number generator (PRNG) provides an appropriate solution for generating 
a secret key. PRNGs are similar to cryptography, where the user feeds the secret seed (S) (low 
entropy input) into the pseudo system, and it will generate random output (fuzzy random 
stream). 
      The cryptographic algorithms have inbuilt blocks for key generation, but they require 
intense computation. PRNG is used for key generation to cope with the problem of 
computational time. However, these PRNGs fail to produce large space sequences due to the 
linearity produced by the generator's integer parameters. The proposed Pseudorandom 
Sequence Generator uses the property of irrationality to generate the random sequence. The 
randomness of PRSG determines by evaluating the random bits with the NIST- STS. Apart 
from the statistical properties, there are two main requirements for PRSG such as speed and 
robustness. The speed may not play an essential role while generating the single cryptographic 
key, but in the case of a stream cipher, simulation or masking of protocols require a large 
number of random sequences, and thus speed becomes the essential prerequisite during that 
situation. The robustness of PRSG against attacks plays an essential role in data security. The 
significant contributions of this work are as follows:   

(1) The improved pseudorandom sequence generator using non-integral numbers is proposed 
to avoid the linearity in the generation and provide large sequence space.  

(2) The main idea uses the properties of non-terminating, non-repeating decimals in a modulo 
arithmetic system to generate the sequence endlessly.  

(3) The standard and empirical analysis is performed to validate the randomness of generated 
sequences. 

(4) The secure image encryption has been performed using the constructed pseudo-random 
generator. 

(5) The uniformity in generated keys for image encryption is examined using variance and 
key sensitivity analyses.    

(6) The degree of uncertainty in the generated random variable is examined using Entropy 
analysis.    

(7) The key-space and speed-space analyses is used to measure the strength of the proposed 
generator that resists brute force attacks.  

The rest of this work has been organizing as follows. We introduce various traditional 
mathematical models for pseudorandom number generators in Section 2. Section 3 and Section 
4 present the overall architecture and performance evaluation of generated sequence. Section 
5 examines the generated sequence by using image encryption. At last, the entire works have 
been concluding in Section 6.   
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2. Related Work 
2.1. Random Number Generator 
In the earlier time, mathematicians and scientists were very fascinated about generating 
random numbers using deterministic systems. The feature of the generated sequence does not 
allow any pattern or cycle in the generation. The family of randomness divides into four groups 
[26] (i) Ontic, which always follows some fixed law or parameters to generate the sequence, 
(ii) Epistemic follows the environmental factors or unknown laws for a generation. (iii) Pseudo, 
uses the statistical properties to generate the random stream, and (iv) Telescopic, which is 
neither random nor looks random. It is tough to conceive that any modern cryptographic 
algorithm does not use random numbers. The random number generator classifies into three 
classes: (i) True Random Number Generator (TRNG), (ii) Pseudorandom Number Generator 
(PRNG), and (iii) Hybrid Random Number Generator (HRNG). A TRNG uses natural 
randomness rather than non-deterministic sources. On the other hand, PRNG uses the 
deterministic system to generate random numbers. The HRNG uses a seed value selected from 
the hardware interface and atmospheric noise to generate the sequence.  

2.2. Pseudorandom Number Generator 
The pseudorandom generator uses mathematical models to generate the sequence. The 
sequence generation requires seed value (Sx) and modulus function to generate numbers (Sx

 .(׳
For the next round, the (Sx

has fed as seed (Sx+1 (׳
Sx ←Sx = ׳

 the iteration continues until the ,(׳
system terminates. The PRNGs depend on the period that decides the length of the sequence 
before reaching the same vector. For cryptographic application, the PRNGs required two 
properties (i) they must pass the statistical test, and (ii) they resist various attacks [3].  

2.3. PRNG Classification 
The PRNG classifies into two types (i) 1/P Generator and (ii) Modulo Arithmetic System. In 
1/𝑃𝑃 generator, the user input (P) as a prime number, which is divided by one to get the output 
as a quotient. The drawback of this method is that (i) entirely predictable and (ii) generates a 
small segment of a stream. On the other hand, Carl Friedrich Gauss [22] has first presented 
the modern approach of the Modular arithmetic system. It introduced the terminologies such 
as (i) Seed value, (ii) Deterministic sequence which passed randomness, and (iii) Cycle length, 
Tail, and Period. In 1949, John Von Neumann had first developed the Middle-Square Method 
(MSM), which has a concise range of sequence generation. The working principle of MSM is 
elementary; here, the user has to take the (n) digit; from that, the middle (r) digit is squared 
and used for the next round [18]. In [7], the authors generated uncountable finite numbers 
using the concept of 1/p generator and presented them by using Eq. 1. 

αb,c =  ∑ 1
(bmcbm)

∞
m=1                                                               (1) 

Here c > 1 (integer), b = odd number and co-prime to c, and m = number of iteration. Stoneham 
first coined the background of this generator as 2-normal. There are various pseudorandom 
number generators based on the modular system. These systems had originated by using 
Fermat law and the Euclid Division algorithm [28]. The Euclid Division Algorithm stated that 
for any two integers ‘a’ and ‘b’, there exist unique numbers ‘q’ and ‘r’ such that, (a = bq + r), 
{i.e., when a divides by b, it leaves quotient q and remainder r}, where (0 ≤ r < b and b ≠ 0) 
and ‘q’ and ‘r’ is unique. The proposition of Fermat law for any integer is as follows, for any 
integer ‘a’, there exists an integer ‘b’ such that, (a ≡ r mod b), where {r = remainder and b 
divides a, {(0 ≤ r ≤ b), r ∈ I}. Now, according to Euclid and Fermat theorem, it is written as 
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[(a ≡ r mod b) ≅ (a = bq + r)] for some (q ∈ I). The congruence of the Fermat theorem had 
extended the Euclid algorithm. Fermat stated [16] that for any integer ‘a’ and ‘m’, where (m 
≠ 0) are said to be congruent modulo (m) is written as Eq. 2. 

 a ≡ b mod m                                                                                (2) 
As seen from the Euclid algorithm, ‘b’ is unique, and the congruence mainly focuses on the 
remainder. The properties of Euclid and Fermat theorems specify as follows: 
 

(1) Property 1: Both calculate the remainder when another non-zero number divides the 
number. 

(2) Property 2: The number has uniquely written in the form of (a = bq + r) for every number 
‘a’ and ‘b’, and it defines the stream (r1, r2, …, ri). Here, ri = remainder in each successive 
step. 

(3) Property 3: For every large integer, we obtain stream <r> = [r1, r2, …, rn], which is large 
or small depending on the choice of the numbers. 

 

The limitations of Euclid and Fermat theorem are as follows: (i) Both the algorithm 
congruence do not define for non-integral numbers, (ii) It must need to have the track of every 
upcoming number (even in decimals), (iii) It takes a very long time, and procedure for the 
calculation of large numbers, and (iv) For every rational number the stream <r> is permanently 
terminating, and hence it repeats after some time. These are some properties of traditional 
generators for sequence generation.  

2.3.1. Modulo Arithmetic System 
In this section, we discuss some of the generators based on the modulo arithmetic system. In 
1958, Linear Congruential Generator (LCG) had developed using the discontinuous linear 
equation function, represented by Eq. 3 [4]. 

Xn+1 = (a × Xn + c) mod m                                                                     (3) 
Here seed value (Xn ∈ I), m = moduli, (m > 0), a = multiplier, and c = incrementor, and the 
range of stream belongs to (0 ≤ a < m) & (0 ≤ c < m) and [a, c ∈ I]. The LCG system generates 
long-range sequences, which use in various applications [20]. In 1986, Michael O. Rabin's 
one-way function generated the random sequence presented using Eq. 4 [4]. 

Xn+1 = Xn
2 mod m                                                                            (4) 

Here Xn = seed value, m = (p × p) the product of large co-prime numbers (safe prime). The 
BBS system generates an extended range of cryptographically secure sequences [23]. In [24], 
the author has introduced the Fibonacci series-based pseudorandom number generator is 
represented by using Eq. 5. 

Fk = (A × k) mod B                                                                      (5) 
Here k = (1, 2, …, (B-2), (B-1)), and ‘A’ & ‘B’ are the Fibonacci numbers. The author had 
claimed that it is easy to compute, secure, and generate long-range random sequences. The 
generation of the pseudo number is a challenging task, and researchers are always trying to 
find different ways to overcome this challenge.  

2.3.2. Non-Integral Number 
In this section, we present non-integral number-based sequence generation. In [14], the author 
generated 134 million decimal random values of π on the NES SX-2 supercomputer. The 
100,000 decimals random values had generated using the Euler constant (e) [9]. In [15] author 
had computed one million random decimal values square root of 2. In [30], the author had 
computed the different base values of square roots for 3, 5, 6, 7, and 10 for random number 
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generation. The digit generated for different base values is as follows: 55296, 36864, 32768, 
30720, and 24576. In [5], the author had investigated the behavior of pseudorandom numbers 
based on irrational numbers. The tests contain 100,000 decimal values for each π, Napier 
constant (e), and the square root of 2, 3, 5, 7, 11, and 13 for the randomness test. In [19], the 
author has proposed pseudorandom number generators based on the irrational numbers 
presented by Eq. 6. 

Xj = ��Xj−1+n� × K1 × (M−j)
K2

� mod n                                                      (6) 

Here Xj = Seed value, j ∈ {1, 2, …, N}, n = positive integer (natural number), K1 & K2  are set 
of irrational numbers, M = N + p (N is the maximum number of element ‘Xj’ and p ∈ N).  
 

2.3.3. Chaotic System 
The Chaos theory has an alternative way for the generation of random sequences for 
cryptographic applications. The chaotic map categorizes into two different types (i) discrete-
time (logistic map) and (ii) continuous-time (Chen chaotic). Here we present five different 
chaotic systems used in GANs training set [40]. 
 
 

(1) QCNN [32]:   
 

⎩
⎪
⎨

⎪
⎧ g1 =  −2a1�1−  g12 sin h1

h1 = (−b1( g1 −  g2) + 2a1 cos h1)/(�1 −  g12)
g2 =  −2a2�1−  g22 sin h2

h2 = (−b2( g2 −  g1) + 2a2g2 cos h2)/(�1−  g22)

                              (7) 

 

Here g1 and g2 are polarizabilities, h1 and h2 are the quantum phase, a1 and a2 are proportional 
energy coefficients, and b1 and b2 are weighted influence factors of adjacent cells. The chaotic 
system works when it is initiated with (a1 = a2 = 0.28, b1 = 0.7, and b2= 0.3). The system will 
generate millions of random bits, which has used for image encryption.  
 
 

(2) 4D hyperchaotic system [31]: 
 

 

⎩
⎨

⎧
x1 =   δ1(x2 −  x1)

x2 =   δ2x1 +   δ3x2 −  x1x3 +  x4
x3 =  x22 –  δ4x3

x4 =  − δ5x1

                                                         (8) 

 

Here x1, x2, x3, and x4 represent the system state vector, δ1=27.5, δ2=3, δ3=19.3, δ4=2.9, and 
δ5=3 are initial hyperchaotic system value, the generation required Lyapunov exponents which 
is initialized as λ1 = 1.6170, λ2 = 0.1123, λ3 = 0, and λ4 = −12.8245. The positive value indicates 
the system has positive exponents, generating a higher security random sequence.  
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(3) Fractional Chen hyperchaotic system [17]: 
 

⎩
⎪⎪
⎨

⎪⎪
⎧

dα

dtα
 y1 =  ω1(y2 −  y1) + y4

dα

dtα
 y2 = ω2y1 − y1y3 + ω3y2
dα

dtα
 y3 =  y1y2 − ω4y4

dα

dtα
 y4 = y2y3 +ω5y4

                                                               (9) 

 

Here y1, y2, y3, and y4 represent the initial system parameter and initialized as 2, 2, 25, and 2. 
The system uses the positive values for ω1, ω2, ω3, ω4, and ω5 and it is initialized as 35, 3, 12, 
7, and 0.58 respectively. The Lyapunov exponents of the hyperchaotic systems initialized as 
λ1 = 0.2104 and λ2 = 0.126. The system will create higher security.  
 
(4) Lorenz chaotic system [37]: 

 

⎩
⎪
⎨

⎪
⎧

dq
dt

= φ1(w− q)
dw
dt

= qr −φ2q + w
dr
dt

= qw −φ3r

                                                                            (10) 

 

The system initializes as φ1=10, φ2=24.72, and φ3>8/3 are the parameter of the Lorenz system, 
and it is proportional to the Prandtl number and Rayleigh number. Here ‘r’ represents the rate 
of change with respect to time, ‘q’ represents the rate of convection, ‘w’ represents the 
horizontal temperature variation, and ‘z’ represents the vertical temperature. It will generate a 
random sequence. The generated sequence is said to be the best chaotic system.   
 
(5) Henon chaotic system [6]: 

 

�x(n + 1) = 1 − ax(n)2 + y(n)
y(n + 1) = bx(n)                                                         (11) 

Here a = 1.4, and b = 0.3 are the control parameters, and x, y ∈ Rw to control the dimension of 
the chaotic system. The Henon map generates a large set of random sequences. The Chaotic 
sequence is mainly used for cryptographic applications. 

2.3.4. Traditional Generators 
As mentioned earlier, PRNGs use encryption in various ways, such as XORing of random bits 
with original data, padding with data, nonce, and key generation. In [29], image encryption 
uses BBS systems, where the substitution cipher performs using random sequence on image 
intensity. In [39], recurrent neural networks and long short-term memory (LSTM) design to 
generate the random stream. M. Bellare et al. [21] proposed a finite pseudorandom function 
for message block encryption using the XOR scheme. The [2] hybrid visual crypto-
steganography approach presents the color image, where the permutation and combination 
technique shuffle the pixels. The strength of the PRNGs identifies using key-space, length of 
the generated sequence, and speed of the generator, which are crucial for the cryptographic 
key. In [8], the block cipher technique examines and observes that the weak cryptographic key 
has generated using the tent map efficiently exploits the security of the S-box. The permutation 
and diffusion structure has been created for image pixels to prevent the chosen-plaintext attack 
[36]. In [12], the author has applied the brute force attack on Chen’s chaotic generated 
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sequence. The attack reveals 66% of the generated random sequence. Ultimately we have 
concluded that the small key-space of PRNG quickly exposes the randomness.   
 

3. Proposed Model 
In this paper, a modular arithmetic system uses to generate the PRNG. As discussed earlier, 
the generators state will easily get predicted when the low entropy of seed generates the 
random sequence. The proposed generator has used the non-integral numbers to achieve 
sufficient entropy.  

3.1. Mathematical Foundation 
This section presents the mathematical foundation for the proposed pseudorandom sequence 
generator. The traditional pseudorandom generator is based on Fermat’s law and the Euclid 
Division algorithm [42]. The limitations of Euclid and Fermat’s Theorem (1) It needs to track 
every upcoming number in each step of the division algorithm, which is practically not 
possible with non-integral numbers, (2) It takes a very long time, and procedure for the 
calculation of extremely large numbers, and (3) Every rational number, the generated stream 
is always terminating and hence it repeats after some time. The mathematical comparison for 
traditional pseudorandom number generators, indicate some limitation of uniform random 
sequence. It is observed that the streams are uniformly distributed but not cryptographically 
secure.   

To overcome the above mentioned issues, we propose a pseudorandom generator 
based on the non-integral number with modular arithmetic to obtain the real numbers. The 
non-integral number is categorized in two parts (i) Rational, and (ii) Irrational numbers. The 
rational number is written in the form of �𝑝𝑝

𝑞𝑞
�, where (q ≠ 0). The proposed generator uses the 

non-integral number which means ‘q’ does not divides the ‘p’, then there are two possibilities, 
the decimal representation which terminates after a while or the sequence repeats itself and 
goes on forever. The non-terminating, non-repeating behavior of non-integral number is 
understood by using the continued fraction (C.F). At first sight it seems difficult to counter the 
problem of recurrences. The use of continued fractions for any real number (whether rational 
or irrational) is to be written or approximated as: 

𝑎𝑎 =  𝑎𝑎1 + 1
𝑎𝑎2+ 1

𝑎𝑎3+ 1
𝑎𝑎4+  …

                                                          (12) 

Here every number (a2, a3, …) except ‘a1’ are positive integer. The continued function having 
remarkable property based on Euclid’s division algorithm. Before that, it is important to 
mention that every rational number has a finite sequence in its canonical form of the continued 
fraction. But every irrational number has an infinite sequence in its canonical form of the 
continued fraction. (Note: Every number is written uniquely in the form of C·F). Because in 
every number (a2 + k), then (k = a3 + α), then (α = a4+ β, …) then (a1, a2, a3, …) are determined 
using Euclid’s division algorithm for every (a2, a3, …) generated is unique sequence. The 
advantages (C·F) are: (1) It use irrational number for the construction of random numbers (As 
Fermat’s and Euclid’s are only limited to a rational number. We use this fact to generate large 
sequence of random numbers without repetition), and (2) Irrational number is non-terminating, 
non-repeating and generate large range of random numbers without repetition. Here we present 
the proof for non-repeating, non-terminating sequence using the continued fraction.  
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Proof: Let as take a number ‘a’ divided by ‘b’ we get ‘a1’ as quotient and ‘b1’ as a reminder.  

k = a
b

=  a1 + b1
b

                                                               (13) 

Therefore, a = a1b + b1 (by Euclid’s). Now, let ‘b’ be written as a2 + b2
c

  for 

some a2, b2, and c;  b = a2c + b2, therefore k = (a1 + b1
a2+

b2
c

). If this process continues, then 

we get a finite or infinite sequence of ai′s and bi′s. The ai′s and bi′s could be real or imaginary 
values (we’ll only consider real values). Therefore every ‘k’ can be written as: 

𝑘𝑘 = 𝑎𝑎1 + 𝑏𝑏1
𝑎𝑎2+

𝑏𝑏2
𝑎𝑎3+

𝑏𝑏3
…

                                                             (14) 

Let ‘I’ be an integral part of any number ‘r’. Therefore, I =  ⌊r⌋ (Here, ⌊·⌋ is the greatest integer 
function). Then, (f = r − I) (Here, ‘f’ is the fractional part), and (r = I + F). If (I1) be an integral 
part of �1

f
�; 𝐼𝐼1 = �1

𝑓𝑓
�, Then, 𝑓𝑓2 = 1

𝑓𝑓
− 𝐼𝐼; Then again, = 𝐼𝐼 + 1

�1𝑓𝑓�
= 𝐼𝐼 + 1

𝐼𝐼1+𝑓𝑓2
 , so we write in the 

form (C.F) as. 

𝑟𝑟 = 𝐼𝐼 + 1
𝐼𝐼1+

1
𝐼𝐼2+

1
…

                                                                   (15) 

Now, it is evaluated that (C·F) of 1
𝑓𝑓2

 which is required to get the canonical form of the 
continued fraction. Now, based on that we have proposed the pseudorandom sequence 
generator which generates sequence with continuous linear equation. The key feature of the 
generator is based on the non-integral numbers. (Note: The number which cannot be 
represented in the form of uniform continued fraction, then it is called an irrational number. 
There are some of the universal systems are (i) Circle's circumference to its diameter (𝜋𝜋), (ii) 
Euler's number (𝑒𝑒), and (iii) Square root of natural numbers except perfect squares). Let us see 
the working of continued fraction for non-integral numbers. The mathematical represent for 
the non-integral number (r = √3) is presented as:  If, r = (I + f), (I= integral part and f = 
fractional part). Then,  

f = R – I = (√3 − 1) =  1
𝑓𝑓

= �√3+1
2
� 

Now, repeating the process for 1
𝑓𝑓
; we get 1

𝑓𝑓
=  𝐼𝐼1 + 𝑓𝑓1 (Here, 𝐼𝐼1 = 1)  

𝑓𝑓1 =
1
𝑓𝑓
−  𝐼𝐼1 =  �

√3 + 1 
2

− 1� 
1
𝑓𝑓1

=  √3 + 1. 

Therefore, by continuing this manner we will get the C.F of √3. This process will explain the 
nature of irrational numbers and provide approximated values for said problems. Now, for the 
selection in-between rational and irrational numbers, it is clearly evidence that irrational 
number provide better solution then rational for pseudorandom number generation. The 
mathematical theory states that all the integer lies on the number line and the set of positive 
integers counted from (1 to ∞) (goes on forever) and it is also called a set of natural numbers 
(N = 1, 2, 3, …). In modulo system (a ≡ b mod m), where (a ≤ b < m) & (b ∈ N) gives only 
‘m’ possibilities of remainder which has finite set of resides. This creates random sequence of 
very low entropy, the introduction of decimal system in modulo system generates the long 
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range of sequence, and lead to the conclusion that between any two integers there are infinite 
real numbers which increase the efficiency of the generator.  

3.2. Proposed Generator 
According to the mathematical foundation the proposed pseudorandom sequence generator 
uses non-integral numbers with modular arithmetic to obtain the real numbers. The 
mathematical model for the proposed generator is presented in Eq. 16. 
 

Decimal output (Sdec) ≡ Xn+1 = (Xn × M × I) mod m                                          (16) 
 

Here Xn = Seed value [positive Real number], I = Non-Integral Real number with a sufficiently 
long fractional part, M = Multiplier ‘Maddy Constant’ (any number ∈ I+ to increase the value 
of seed), m = Moduli (any sizeable natural number). (Note. The value of multiplier (M) and 
non-integral part (I), where (M × I), not an integer). Afterward, the generated sequence divides 
by moduli (m) to get the integer value. The range of integers stands in between (0 to m), and 
the conversion of the decimal (Sdec) to integer (Sdig) number takes place by using Eq. 17. 

Integer output (Sdig) = �Xn+1
2
�                                                             (17) 

Here [•] is the greatest integer function that generates the ‘Sdig’ floor integer value. The initial 
condition for conversions should be Xn+1 > 2. The conversion of an integer number (Sdig) to 
binary (Sbin) performs using Eq. 18. 

Binary output (Sbin) = Xn+1 mod 2                                                      (18) 
The range of binary sequences lies in-between [0, 1]*. The proposed PRSG has a moduli value, 
which means that the lesser the value of ‘m’, creates low the entropy of keyspace. In this paper, 
the proposed generator uses the Turing machine computation, a probabilistic procedure to 
generate random bits. (Probabilistic) poly (n), polynomial-time procedures halt in (worst-case) 
time, and ‘n’ is the input length. The generator used the moduli (m) to generate the maximum 
length of the sequence. Fig. 1 shows the block diagram for the proposed pseudorandom 
number generator.  

 
Fig. 1. Block diagram for proposed generator 
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Initialization: In this phase, the secret seed value ‘Xn’ is taken for the generator and 
rest of the parameter has been assigned such as non-integral (I), multiplier (M), and moduli 
(m). 

Generation: Here, the proposed generator has produced three different sequence 
patterns. The non-integral (I) is used to produce the decimal pattern (Sdec) using Eq. 16. 
Whereas cryptographic applications use PRNG bits, the next step is to transition from decimal 
to integer numbers. The generation of integer sequence is performed by dividing ‘Sdec’ with 
moduli ‘m’ that produce integer sequence. Afterward, the integer sequence is converted into a 
bit ‘Sbin’ by taking modulo operation. 

Testing: It uses to test the randomness of the generated sequence. The NIST-STS, 
DIEHARD, and ENT statistical tests have been performed on the generated sequence to detect 
the uniformity of the random bits.  

Encryption: The generated bit sequence uses for the cryptographic application. Here, 
the additive cipher performs image encryption, where the random frame of (256×256) has 
generated and XOR with the original image to produce the ciphered image. 

Secret keyrand_bit = frame (256×256) ← Sbin 
Imagescramb = secret keyrand_bit XOR Imageorig 

Analysis: The analysis of the generator is performed based on the key sensitivity analysis. The 
slight change in the secret seed value generates different sets of random sequences. Then the 
generated sequence has been XORed with the image file. After that, the variance and 
correlation analysis perform to detect the deviation in the output.  
         Here we discussed several properties of the proposed generator which is required to 
generate the random sequence.   

Property 1. If moduli (m = 1, 2), the generated sequence lies between the intervals (0, 
m). The integer output will be {[(Xn+1/2) mod m] < 2} and the binary sequence generated will 
be {0}n or (sequence = 0, 0, 0, …) whatever the value of ‘M’ & ‘I’ will be chosen. 

Property 2. If moduli (m = 3), then the generated sequence lies in between the range 
of (0 < Xn+1/2 < 1.5). It observes that the generated output narrows down the generation and 
produces a low entropy sequence.   

Property 3. If moduli (m ≥ 4), then the generated sequence belongs to the interval of 
[0, m]; the integer conversion (0 < Xn/2 < m/2). Moreover, this (Xn mod 2) will give the 
sequence of 0’s and 1’s. (Note: It observes that the multiplier ‘M’ takes particularly large to 
generate a more random sequence of 0’s and 1’s). In generated space, ‘S’ elements have been 
repeated because the range of sequence correlates with modulo ‘m’. Therefore, the estimated 
range of generated sequence is about (m × 106) for the proposed generator (1016 ∈ size of the 
elements after decimal points in R-language). The elements in the generated space (S) have 
been determining the period of the generator. 

Property 4. If moduli (m) be the prime number and multiplier M = 1, then the length 
of the generated period is up to (m×106). The secret seed ∈ (0, m×106) observes that the 
generator does not depend on ‘m’ whether it is prime or not. 

Property 5. If moduli m = power of (2) and multiplier M = 1, then the period of the 
generated sequence is up to (m×106). It concluded that the generator is partially dependent on 
moduli value for the generation of random sequence. 

Property 6. If modulo (m ∈ I+), multiplier M = 1, and seed Xn = 1, based on the initial 
parameters if the non-integral (I ∈ I+), the proposed generator acts similarly to the LCG, which 
means that the range lies in between (S ≤ m).  

Property 7. If moduli (m = 1) at this point, any traditional known generators do not 
perform any operation. The proposed generator using the concept decimal number, which 
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means that the residue below ‘1’ has also existed; hence it is concluded that the proposed 
generator produces a vast range of numbers (about 1016). The generated sequence has low 
entropy, and it also exhibits that the proposed pseudorandom sequence generator overcomes 
the weakness of previously known generators. 
 

    Algorithm 1 presents the sequence of steps required to generate the random sequence. 
 

Algorithm 1: Proposed pseudorandom sequence generator (KM-Generator) 
01: Start 
02: Select seed value (Xn) 
03: Initialized non-integral (I), multiplier (M), moduli (m), and n. 
04: for i = 1 to n, do 
05: Generate: float Sdec ← Xn+1 = (Xn×M×I) mod m, {Sequence} ∈ {0 to m} 
06: Convert: int Sdig ← as.integer (Sdec), integer output ∈ {0 to m} 
07: Convert: int Sbin ← (Sdig mod 2), bits ∈ [0,1]* 

08: end for 
09: Stop  

 

Randomness Evaluation 
NIST-STS: The NIST statistical suite has been applied to the generated sequence for 

randomness testing. The input parameters for testing are initialized based on the standard NIST 
SP 800 [4], listed in Table 1. NIST implementation is performed on Linux Mint 19.1 
environment and using R-studio ver.1.1.463 for random sequence generation.  

 
Table 1. Input Parameters 

Test Name Block Length 
Block Frequency 128 

Non-overlapping Template Matching 9 
Overlapping Template Matching 9 

Linear Complexity 500 
Serial 16 

Approximate Entropy 10 
 

 
The NIST suite is a statistical package that consists of 16 tests and is used to examine the 
randomness of generated sequences. These tests focus on different types of non-randomness 
in the sequence [4]. The tests are as follows. (1) Frequency test is used to check the proportion 
of 0’s and 1’s in the entire sequence, (2) Block frequency detect the proportion of ones in an 
M-bit blocks, (3) Cumulative sum test focuses on maximal excursion of 0’s in the random 
walk, (4) Runs test is used to determine the oscillation of 0’s and 1’s, which are too fast or too 
slow, (5) Longest run of ones in a block test checked the irregularity of sequence length, (6) 
Rank test check the linear dependencies among fixed length substring on the original sequence, 
(7) FFT test detect the repetitive patterns that are near to each other, (8) Non-overlapping 
template matching test detect too many occurrence of given non-periodic patterns, (9) 
Overlapping template matching test identify the number of occurrences that are pre-specified 
with target strings, (10) Universal statistical test detects the number of bits between matching 
patterns, (11) Approximate entropy test compares the frequency of overlapping blocks of two 
consecutive length, (12) Random excursion test describe the cycle of exactly k-visits in 
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random walk, (13) Random excursion variant test detects the deviations from expected number 
of visit to various state in random walk, (14) Linear complexity test determine that the 
sequence are complex enough to be consider random, (15) Serial 1 detect the frequency of 
possible overlapping of m-bit patterns, and (16) Serial 2 detect the 2m bit overlapping patterns 
in random sequence. For each statistical test, a set of P-values is obtained corresponding to the 
produced sequence. Each test considers being successful if the P-value ≥ α, otherwise it is 
called failure. The fixed significance level (α > 0.01) is required to accept the generated 
sequence as random.  
             The initial parameters for the proposed generator are as follows: seed (Xn) = 97645, I 
= 1.732, M = 18349, and m = 232 - 1. We have generated 1000 samples of length (n = 106 bits) 

and 100 samples of n = 8×107 bits). Table 2 presents the NIST results for two different sample 
sizes.    
 

Table 2. NIST SP 800-22 statistical test on generated sequence    

S. No Statistical Test n = 106 bits n = 8×107 bits  
p-values Results p-values Results 

01 Frequency 0.9043 Passed 0.2144 Passed 
02 Block Frequency 0.9903 Passed 0.3874 Passed 
03 Cumulative sums 0.7889 Passed 0.2484 Passed 
04 Runs  0.9650 Passed 0.5092 Passed 
05 Longest runs  0.8600 Passed 0.4512 Passed 
06 Rank Test 0.8032 Passed 0.3631 Passed 
07 FFT 0.9075 Passed 0.5075 Passed 
08 Non-overlapping Templates 0.9299 Passed 0.00045 Failed 
09 Overlapping Templates 0.8820 Passed 0.00005 Failed 
10 Universal 0.4288 Passed 0.3059 Passed 
11 Approximate entropy 0.9835 Passed 0.3553 Passed 
12 Random excursions (x = -4) 0.3591 Passed 0.4517 Passed 
13 Random excursions variant (X = -9) 0.0990 Passed 0.3272 Passed 
14 Linear Complexity 0.9589 Passed 0.5753 Passed 
15 Serial  1 0.9453 Passed 0.6986 Passed 
16 Serial  2 0.9210 Passed 0.5822 Passed 

NIST-STS Result Interpretation 
As we see the results in Table 2, the proposed generator has passed all the statistical tests for 
106 bits. Nevertheless, for 8×107 bits, the generator has failed in Non-overlapping and 
overlapping Template matching tests. It indicates that the test is not accurate for the high ‘n’ 
values [13].  

Proportion Analysis: The test is used on certain portions of the sequence to determine 
the randomness. For example, if we take 1000 sequences as a sample (m=1000) and then the 
test has applied on it, where the level of significance (α) = 0.01, then it has suggested that 995 
sequences have passed the test with (p-value ≥ 0.01), with the proportion of 995/1000=0.995. 
This range for proper proportions has been determined by confidence interval (CI) using Eq. 
19. 

 

CI = p ± 3 �p (1 − p)/m                                                         (19) 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022                                   1319 
 

Here p = (1 - α), ‘α’ = level of significance, and ‘m’ = sample size. If the proportion falls 
outside of this interval, then we say that the sample set is non-random. The NIST has 
standardized the confidence p-value interval range between [0.9805, 0.9960]. 
 

 
Fig. 2. The Proportion of P-values 

Fig. 2 presents the p-value proportion analysis results where the p-value proportion plot shows 
that out of (16 tests), there are (4 tests) which having the (p-value < 0.9805) and the remaining 
12 tests p-values proportion falls inside the interval, this shows that the sequence is sufficiently 
large and passes the proportion test of uniformity.  
 

        Distribution of p-value (Uniformity Analysis): The test uses for a visual illustration of 
p-value proportion. The uniformity of p-values lies in-between [0, 1]. The distribution divides 
into ten bins, where p-values lie within bins that have been counted and computed. The Chi-
square test (𝜒𝜒2) calculates the goodness-of-fit for each bin and checks the uniformity of the 
distribution by using Eq. 20. 

𝜒𝜒2 = ∑
�𝐹𝐹𝑖𝑖−

𝑠𝑠
10�

2

� 𝑠𝑠10�
10
𝑗𝑗=1                                                                        (20) 

Here Fi = number of p-values in each ‘j’ bin, and s = size of the sample. The uniformity of p-
values has determined by threshold value which calculates using Chi-square. The test results 
must be greater than the threshold value to determine uniformity. The threshold p-value was 
calculated using p-valuesT = igamc (9/2, 𝜒𝜒2), where (p-valuesT ≥ 10-4) for uniform distribution.  
 

 

Fig. 3. Histogram of P-values 

Fig. 3 represents the uniformity analysis of the P-values for six different statistical tests. The 
distribution of the p-value divides into ten bin intervals. Here we obtain P-valuesT = 0.071620, 
which is greater than 10-4, indicating the uniformity of p-values in each distribution bin. 
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DIEHARD Test: The package contains 19 statistical tests for randomness. The tests 
applied for the same generated sequences. The acceptable range of entire suite passes with a 
95% confidence interval for p-values between 0.0001 and 0.9999, and this method was used 
for our testing. The test description is summarized on the site 
(https://sites.google.com/site/astudyofentropy/background-information/the-tests/dieharder-
test-descriptions).The Diehard test results are summarized in Table 3. 

 

Table 3. DIEHARD statistical test 

S. No Statistical Test n = 106 bits 
p-values Results 

1 Birthday spacing 0.8016 Passed 
2 Overlapping 5-permutation 0.0529 Passed 
3 Binary rank (32 × 32) 0.7342 Passed 
4 Binary rank (6 × 8) 0.7749 Passed 
5 Bitstream 0.5905 Passed 
6 OPSO 0.2735 Passed 
7 OQSO 0.4123 Passed 
8 DNA 0.0566 Passed 
9 Stream count-the-ones 0.8822 Passed 

10 Byte count-the-ones 0.9691 Passed 
11 Parking lot 0.4213 Passed 
12 Minimum distance 0.8743 Passed 
13 D spheres 0.5438 Passed 
14 Squeeze 0.5621 Passed 
15 Overlapping sums 0.0391 Passed 
16 Runs up 0.9965 Passed 
17 Runs down 0.3397 Weak 
18 Craps 0.7114 Passed 
19 K-S Test 0.9441 Passed 
 
 

ENT Test: It is another statistical test for the randomness evaluation as follows- (1) 
Entropy Test measures the information density of generated sequence, (2) Optimum 
compression measures the sequence based on information density. If the sequence is highly 
dense, it is unlikely to be reduced in size, (3) Chi-square distribution is used to measure the 
randomness of data. The absolute number and percentage indicate the frequency of truly 
random sequence, (4) Arithmetic mean value test simply summing the results all the bytes 
(127.5 = random), (5) Monte Carlo value for Pi estimation is uses the six bytes sequence within 
a square. If the distance of the randomly-generated point is less than the radius of a circle 
inscribed within the square, it is considered a “hit”. The percentage of hits can be used to 
calculate the value of Pi, and (6) Serial correlation coefficient Test is used to measure the 
quantity each byte depends upon the previous byte, and the values will be close to zero. Table 
4 presents the results for all the tests from ENT. 

 
 
 
 
 

 

https://sites.google.com/site/astudyofentropy/background-information/the-tests/dieharder-test-descriptions
https://sites.google.com/site/astudyofentropy/background-information/the-tests/dieharder-test-descriptions
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Table 4. ENT statistical test  
S. No ENT test Results 

1. Entropy 7.99994 bits per byte 
2. Optimum compression (OC) OC would reduce the size of this 2019999-byte 

file by 0 percent. 
3. Chi-Square Distribution The Chi-square distribution for 2019999 

samples is 311.19 and randomly would exceed 
this value 97.97 percent of the time. 

4. Arithmetic mean value 126.489 (127.5 = random) 
5. Monte Carlo ‘π’ estimation 3.145120754 (error 0.08 percent) 
6. serial correlation coefficient -0.00092 (totally uncorrelated = 0.0) 

 

Performance Analysis with Image Encryption 
In this section, the proposed generator uses for image encryption. Here matrix ‘A’ has been 
created using the proposed generator, similar to the original image dimension (256 × 256) 
based on the floating point standard of IEEE for double variables (IEEE Computer Society, 
2008). Then the XOR operation is used in between the original image and matrix (A). The 
encryption process used the sort-index method to shuffle the pixel positions. The generation 
of matrix ‘A’ with original key (K1) is given as Xn = 85289, I = 1.732, M = 95124, and m = 
232 - 1, and generate wrong key (K2) with small change in M = 95124 + 10-3. 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

 

Fig. 4. The results of image encryption using transposition of pixels 
 
 

Fig. 4 shows the complete cycle of the cameraman image with the original and wrong key. 
Fig. 4(a) presents the original cameraman image. Fig. 4(b) represents the encrypted image 
using a secret key, ‘K1’. Fig. 4(c) shows the decrypted image. Fig. 4(d) presents the decryption 
using the wrong key ‘K2’, Fig. 4(e) presents the encryption using the wrong key ‘K2’, and 
Fig. 4(f) represents the difference between ‘K1’ and ‘K2’. It observes that the proposed 
generator is extremely sensitive towards its input values, and it does not reveal any information, 
which shows good coherence with image encryption.  
      



1322                                                                                                     Sinha et al.: An Improved Pseudorandom Sequence Generator  
and its Application to Image Encryption 

      Speed Analysis and Comparison: The comparison of encryption time is presented for 
cameraman images. The decryption process is just the inverse of encryption, and it requires 
equivalent time. Here, the proposed generator is compared with the traditional cryptographic 
algorithm and presented in Table 5.  

Table 5. Comparison of encryption time 

Image Technique Time (Unit: Second) 
 AES 2.472704 
 

Cameraman (256 × 256) 
Ref [43] 0.005362 
Ref [44] 0.025781 

Proposed Generator 0.006542 
 

      Variance Analysis: It uses to check the uniformity of pixels in the image. According to 
[38], the quality of the key determines using the variance analysis on encrypted images. The 
encryption performs by creating a slight change in the input parameter of the original key (K) 
that creates five different keys (Ki, Kj, Kx, Ky, and Kz). If the variance of two encrypted images 
is closer to each other, it indicates the high uniformity in the ciphered image. Eq. 21 represents 
the mathematical formulation for variance analysis. 

�
var(P) = 1

256
 ∑  (Pi − P�)2255

i=0  

P� =  1
256

∑ Pi255
i=0

                                                           (21) 

Here the pixel vector is denoted by P, ‘i’ is the pixel value, P� = mean, and Pi is the ith pixel 
value of the pixel vector. The original image encrypts with different key sets that slightly 
change the parameters, and then the histogram variance has been computed. The standard 
image is obtained from the site (https://sipi.usc.edu/database/). Table 6 presents the variance 
values of the different encrypted images. 

Table 6. The variance analysis of small change among the secret key 

Image Plane Image K Ki Kj Kx Ky Kz 
5.1.11 1094 5446 5481 5467 5472 5438 5446 
5.1.12 3274 5459 5479 5471 5438 5462 5465 
5.1.13 5735 5439 5463 5476 5471 5443 5439 
5.1.14 1795 5469 5478 5461 5475 5435 5441 
Lena 2289 5453 5463 5471 5479 5436 5469 

Cameraman 4720 5466 5479 5449 5481 5463 5472 
 

It observes that the variance value of encrypted images using different key sets is very close 
to the image encrypted with the original key. It implies that the proposed generator is highly 
sensitive to its initial parameters and uniformly distributed after encryption. 

    Correlation Coefficient Analysis: It uses to detect the deviation between two adjacent 
pixels. Here 3000 random pixels pairs are selected from the original and ciphered image to 
conduct the test—the correlation concept using the mean and variance of adjacent pixels 
calculated using Eq. 22.    

Covx,y = ∑ (xi−x�)(yi−y�)n
i=1

�∑ (xi−x�)2n
i=1 ∑ (yi−y�)2n

i=1

                                                               (22) 

Here x� = �1
n
�∑ xin

i=1 , and y� = �1
n
�∑ yin

i=1 . Whereas (x) and (y) are two adjacent pixels of 
horizontal, vertical, and diagonal direction, ‘n’ is the total number of pixels. The correlation 

https://sipi.usc.edu/database/
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coefficient of adjacent pixels is maximum (nearer to 1) for the original image, whereas 
minimum (nearer to 0) for the encrypted image. Furthermore, the results are prepared based 
on three different directions (horizontal, vertical, and diagonal), listed in Table 7. 

Table 7. The Comparison of the Correlation Coefficient 

Direction Proposed Generator Ref. 
[1] 

Ref. 
[10] 

Ref. 
[11] 

Ref. 
[33] 

Ref. 
[35] 

Ref. 
[41] Plane 

Image 
Cipher 
image 

Horizontal 0.9417 -0.0021 - 0.0127 0.0005 0.0004 -0.0045 0.0096 0.0101 
Vertical 0.9616 -0.0028 - 0.0242 -0.0013 0.0008 0.0004 0.0342 0.0044 
Diagonal 0.9243 -0.0026 - -0.0011 -0.0007 -0.0194 0.0205 0.0006 

 

Here the results of the proposed generator have been compared with various chaotic-based 
systems. The experimental results show that the plane image values are nearer to ‘1’, whereas 
the ciphered images values are nearer to ‘0’. The results of the proposed generator are better 
than the methods in [1, 10, 11, 35] and comparable with those methods in [33, 41].   

 

Differential Attack Analysis: It uses to detect the single-pixel change in the encrypted 
image. Two different mathematical models measure the detection (i) Number of Pixels Change 
Rate (NPCR) is used to check the percentage change in pixels, and (ii) Unified Average 
Change Intensity (UACI) is used to detect the average change of intensity of the pixel, and 
calculated by using Eq. 23 and Eq. 24.   

 

Percentage pixel (NPCR) = 
∑ ∑ P(i,j)k

j=1
n
i=1

n × k
× 100                                   (23) 

 

Percentage intensity (UACI) = 
∑ ∑ |C1(i,j)− C2(i,j)|k

j=1
n
i=1

255 × n × k
× 100                                   (24) 

 

The analysis required two encrypted images and ‘C1’ and ‘C2’ generated from two original 
images with only a one-pixel difference for analysis. Here we define 2D array D(i, j) having 
the same size as the original image. Now to detect the one-bit change, if (C1(i, j) = C2(i, j)), 
then D(i, j) = ‘1’ or else it is ‘0’, this analysis illustrates that the slight change in plaintext sense 
in the encrypted image. Table 8 presents the comparison of NPCR and UACI for various 
traditional and proposed algorithms. Here, we have chosen the random pixel position (150, 36) 
on the Lena image and converted the pixel from 126 to 125. The standard statistical value for 
NPCR > 0.995 and UACI > 0.333 for the acceptance of results. 
 

Table 8. The comparison of NPCR and UACI 
Test Ref. 

[1] 
Ref. 
[10] 

Ref. 
[11] 

Ref. 
[33] 

Ref. 
[35] 

Ref. 
[41] 

Proposed 
Generator 

NPCR 99.65 99.63 99.57 83.45 99.82 99.13 99.87 
UACI 33.60 33.40 33.36 34.68 33.46 28.72 33.47 

 

Here, the proposed generator values are acceptable and match those methods [1, 10, 11, 33, 
35, 41]. Both NPCR and UACI value confirms that the proposed generator resist the 
differential attack. 
     Entropy Analysis: It uses to measure the degree of uncertainty in the random variable. 
Theoretically, the entropy of a grayscale image is equal to (28 ≈ 256) when all the pixels 
distributes uniformly. If the encrypted value is close to the 8Sh (Shannon), it is highly robust 
against attacks. The mathematical formulation for entropy ‘E’ is represented by Eq. 25. 

E =   −∑ pi log2(pi)n
i=0                                                                    (25) 
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Here ‘pi’ is the probability of occurrence of gray pixel value ‘i’. The probability of each pixel 
is 1/256 and lies in the range of [0, 255], which uniformly distributed throughout the region. 
To create maximum obscuring in the image, maximize the entropy value. Table 9 presents the 
comparison of various traditional and proposed generator-based encryption on Lena images. 
The standard value of entropy (E ≤ 8) for the 256×256 grayscale image determines the 
randomness in the image.   

Table 9. The comparisons of entropy value 

Technique Entropy value 
Ref. [1] 7.9901 
Ref. [10] 7.9971 
Ref. [33] 7.9972 
Ref. [35] 7.9984 
Ref. [41] 7.9970 
Proposed Generator 7.9974 

 

It observes that the proposed generator-based encryption has produced acceptable and better 
results than those in [1, 10, 33, 41]. Also, the result obtained is slightly lower than the method 
in [35]. It concludes that the grayscale pixels are distributed uniformly in encrypted images.  

2.4. Comparison 
In this section, the proposed generator compares with various traditional algorithms. The 
results prepare using the p-value of the NIST test. Table 10 presents the comparisons of 
traditional and proposed generators for 106 bits.   

Table 10. The Comparison of NIST-STS P-values of the various generator for 106 bits 

Statistical 
Test 

P-values 
Ref. 
[4] 

Ref. 
[4] 

Ref. 
[6] 

Ref. 
[17] 

Ref. 
[19] 

Ref. 
[31] 

Ref. 
[32] 

Ref.  
[37] 

Proposed 
Generator 

Frequency 0.739 0.534 0.326 0.203 0.934 0.434 0.539 0.709 0.904 
Block 
Frequency 

0.122 0.350 0.763 0.888 0.886 0.308 0.647 0.886 0.990 

Cumulative 
sums 

0.384 0.534 0.375 0.352 0.928 0.185 0.596 0.975 0.788 

Runs  0.213 0.534 0.902 0.248 0.709 0.677 0.949 0.325 0.965 
Longest runs  0.122 0.534 0.311 0.160 0.951 0.696 0.041 0.508 0.860 
Rank Test 0.213 0.350 0.629 0.534 0.663 0.677 0.885 0.330 0.803 
FFT 0.739 0.350 0.184 0.017 0.907 0.397 0.188 0.116 0.907 
Non-
overlapping 
Templates 

0.479 0.666 0.449 0.353 0.743 0.814 0.105 0.706 0.929 

Overlapping 
Templates 

0.350 0.350 0.107 0.885 0.997 0.352 0.086 0.219 0.882 

Universal 0.213 0.017 0.188 0.116 0.605 0.680 0.902 0.016 0.428 
Approximate 
entropy 

0.991 0.739 0.170 0.929 0.955 0.480 0.436 0.998 0.983 

Random 
excursions (x = 
-4) 

0.852 0.823 0.609 0.473 - 0.010 0.128 0.655 0.359 

Random 
excursions 
variant (X = -
9) 

0.419 0.654 0.133 0.512 - 0.844 0.711 0.806 0.099 
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Linear 
Complexity 

0.213 0.534 0.405 0.386 0.975 0.100 0.996 0.638 0.958 

Serial  1 0.365 0.739 0.998 0.950 0.998 0.161 0.875 0.845 0.945 
Serial  2 0.413 0.634 0.997 0.672 0.982 0.032 0.946 0.794 0.921 

 

It observes that p-values of the proposed generator were almost nearer to ‘1’ for the maximum 
tests and passed all the NIST tests of randomness. It also found that the obtained values are 
better than the generators in [4, 6, 17, 19, 31, 32, 37]. It also shows that the generator in [19] 
has failed in two different tests (Random Excursions and Random Excursions Variant test). 
    Speed-Space Analysis: The analysis uses to evaluate the performance of the proposed 
generator. Table 11 presents a comparison of traditional and proposed generators.  
 

Table 11. The comparison of Traditional and Proposed PRSGs 

Generator Operation Length Parameters Space 
(Mbits) 

Speed 
(Mbits/

sec) 
Ref. [4] Moduli m = 232 106 Xn, a, c, and m 13.4 0.0148 
Ref. [4] Moduli m = 232 106 Xn, m = p × p 14.2 0.0011 

Ref. [19] Moduli m = 232 106 Xj, K1, K2, M = (N + p), n 17.1 0.0063 
Ref. [33] XOR 106 x1y1, x1z1, x2y2, x2z2, x3y3, 

x3z3, x4y4, x4z4, y5z5 
- 0.3256 

Ref. [41] XOR and 
Moduli m = 232 

106 S, m = p × p - 0.3900 

Proposed 
Generator 

Moduli m = 232 106 Xn, I, M, and m 15.1 0.0065 

 
We observe that the proposed generator has better speed and space than the traditional 
generators, which suggests [4, 19]. Also, the result is comparable with the methods of [33, 41]. 
 

    Keyspace Analysis: The essential part of PRNGs is to prevent brute-force attacks. In 
addition to the secret key, the proposed generator initial parameters are integer values (Xn) and 
‘M’, ‘I’ a non-integral number. Considering the floating point standard of IEEE for double 
variables (IEEE Computer Society, 2008), every double variable has precision of about 10-15. 
The precision of generated sequence with initial parameters is (1020)4, while the precision of 
parameter ‘m’ is 264 ≈ 1019, and the generator uses the floating-point standards, so the precision 
sequence length after the decimal is (1015), the keyspace size will be (1020)4 ×1019 ×1015 = 10114 
≈ 2380. Table 12 presents the keyspace comparison of several random number generators.  
 

Table 12. Keyspace comparison 

Techniques Keyspace 
Ref. [10] 2199 
Ref. [11]   > 2312 
Ref. [27] 2339 
Ref. [33] 2760 
Ref. [34] 2149 
Ref. [35]   > 2252 
Ref. [41] 216 

Proposed Generator 2380 
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The keyspace of the proposed generator is better than other well-known generators. It observes 
that the keyspace depends on the key size and possible values in each key. Hence, it observes 
that the sequence generated by the proposed generator is large enough to resist brute-force 
attacks.  

Conclusion 
In the paper, an image encryption scheme is presented based on the improved pseudorandom 
sequence generator using modular arithmetic systems with non-integral numbers, which also 
increases the efficiency of the proposed generator. The proposed generator solves the problem 
of the non-uniform distribution of sequence. The NIST-STS, DIEHARD, and ENT statistical 
test have been performed on the sequence to determine the randomness of generated sequence. 
The experimental results and theoretical analysis show that the proposed generator has many 
advantages, such as sensitivity to initial values, robustness, and resistance against common 
attacks. The performance of the proposed generator is measured using speed-space and 
keyspace analysis. Our intent in the future has to use the proposed generator with various 
cryptographic algorithms for key generation and padding. Furthermore, the proposed generator 
is applied to encrypt images for secure transmission over the Internet. 
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