
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, Apr. 2022 1249
Copyright ⓒ 2022 KSII

This work was supported by the Sungshin Women’s University Research Grant of H20200096.

http://doi.org/10.3837/tiis.2022.04.009 ISSN : 1976-7277

Cost-Efficient Framework for Mobile Video
Streaming using Multi-Path TCP

Yeon-sup Lim

Department of Convergence Security Engineering
Sungshin Women’s University, Seoul, Korea

[e-mail: ylim@sungshin.ac.kr]
*Corresponding author: Yeon-sup Lim

Received September 3, 2021; revised March 8, 2022; accepted April 2, 2022;

published April 30, 2022

Abstract

Video streaming has become one of the most popular applications for mobile devices. The
network bandwidth required for video streaming continues to exponentially increase as video
quality increases and the user base grows. Multi-Path TCP (MPTCP), which allows devices to
communicate simultaneously through multiple network interfaces, is one of the solutions for
providing robust and reliable streaming of such high-definition video. However, mobile video
streaming over MPTCP raises new concerns, e.g., power consumption and cellular data usage,
since mobile device resources are constrained, and users prefer to minimize such costs. In this
work, we propose a mobile video streaming framework over MPTCP (mDASH) to reduce the
costs of energy and cellular data usage while preserving feasible streaming quality. Our
evaluation results show that by utilizing knowledge about video behavior, mDASH can reduce
energy consumption by up to around 20%, and cellular usage by 15% points, with minimal
quality degradation.

Keywords: Multi-Path TCP, Video Streaming, Dynamic Adaptive Streaming over HTTP,
Energy Efficient Communication, Mobile Computing

1250 Lim: Cost-Efficient Framework for Mobile Video Streaming using Multi-Path TCP

1. Introduction

Video streaming is now the most popular mobile application of which traffic is more than
65% of worldwide mobile downstream traffic [1]. Dynamic Adaptive Streaming over HTTP
(DASH) standardized by MPEG and 3GP aims to support high-quality streaming of media
content through conventional HTTP Web servers [2] and commercial streaming services such
as YouTube and Netflix utilize technologies based on DASH. Since network bandwidth on the
Internet changes from time to time, DASH client players use Adaptive Bit Rate (ABR)
techniques to manage this bandwidth variability. A player with an ABR technique measures
bandwidth dynamically and requests fixed-length chunks of a video with an encoding rate that
the network bandwidth can support [3-8].

Multi-Path TCP (MPTCP) has recently been gaining interest in the research [9-17], and
standardization [18, 19], communities. MPTCP provides path diversity for end hosts by
simultaneously utilizing multiple network interfaces. Based on the path diversity, MPTCP
achieves greater throughput, robustness, and availability than the standard TCP, while
preserving compatibility with existing TCP applications [12]. Thus, it benefits for reliable
high-definition video streaming services.

DASH over MPTCP incurs additional resource costs for utilizing multiple networks, such
as energy consumption and traffic charges for use of cellular networks. However, there have
been relatively few experimental studies of the impact on energy consumption of DASH over
MPTCP. A notable recent exception is [20]. Also, a recent study [21] shows that the MPTCP
gains for streaming depend on the status of underlying networks. Oblivious use of multiple
interfaces may not be necessary for streaming to maintain reasonable playback quality. In
addition, the ON-OFF traffic pattern from a streaming client player [22] can cause inefficient
use of multiple network paths: it is difficult for MPTCP to efficiently utilize the additional
bandwidth that comes from using multiple subflows if the transfer size is insufficiently large
[9]. Note that each video chunk in DASH typically contains 5-10 seconds of video, resulting
in a chunk size of a few MB. The ON-OFF cycle due to such small chunks particularly affects
cellular energy consumption, since each cycle triggers the high-cost promotion and tail states
of cellular interfaces [23-26].

To address the issues in video streaming over MPTCP, we propose a client-side framework
to adjust path usage and streaming behavior to reduce costs related to energy and cellular usage.
This paper makes the following contributions:

• We introduce mDASH, a mobile video streaming over MPTCP, of which goal is to
reduce both energy consumption and cellular data usage while providing feasible
streaming quality. mDASH allows a client player to access information about the
underlying paths and to decide the proper bit rate, burst traffic shaping, and path usage
to this end. mDASH requires changes only to the client-side, not the server.

• We evaluate mDASH across several scenarios with a real implementation on an
Android mobile device. Our experiments on several classical metrics (bit rate,
rebufferings, etc.) use three different adaptive bit rate schemes and show that mDASH
can reduce energy consumption up to around 20% with minimal degradation of video
QoE metrics such as bit rate, rebuffering duration, etc. Cellular data usage is reduced
by up to 15% points.

 The remainder of this paper is organized as follows. Section 2 provides the background
context for our work. We present our mDASH framework in Section 3. Section 4 evaluates
the performance of mDASH with experiments using a real implementation. Related work is
discussed in Section 5, and we conclude in Section 6.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1251

2. Background

2.1 Behavior of DASH Client Player
A DASH server provides multiple representations of video content with different qualities,

which are determined by encoding bit rates. Each representation consists of small video
chunks for several seconds with corresponding quality. Based on estimated bandwidth, a
DASH client player requests a chunk with an appropriate quality (i.e., bit rate) from a DASH
server, which is called an adaptive bit rate selection mechanism.

A streaming session begins with an initial buffering phase during which a DASH client player
fills its playback buffer to the maximum level (𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚). Once the player fills the buffer with the
minimum number of chunks for video playback, it starts playing the video while downloading
video chunks until the initial buffering completes. After completing the initial buffering phase,
the player pauses downloading, and it again starts downloading when the buffer level becomes
lower than the maximum level by playback. This behavior results in an ON-OFF traffic pattern
where the player triggers a download period for filling the buffer and then an idle period until
consuming a specific number of chunks [13, 22]. If the playback buffer depletes, the player
stops playback and downloads chunks until the buffer has enough video chunks to start
playback again, called the rebuffering phase.

Fig. 1. Example Download Behavior in Android Netflix Player [13]

2.2 Multi-Path TCP
MPTCP utilizes multiple paths for a single data stream by subflows. The subflows are

established through all end-to-end interface pairs so that they become associated with all
available physical paths. MPTCP exposes these subflows as one standard TCP connection to
the application.

MPTCP benefits mobile devices as follows: First, MPTCP aggregates bandwidths from
multiple subflows to provide larger throughput than the standard TCP [14]. Second, if
connectivity in one network becomes unstable (i.e., intermittently connected), MPTCP
continuously provides a stable TCP connection over subflows through another network [15].
Finally, since MPTCP provides a standard TCP socket to user applications, it is transparent to
existing TCP applications, which means that no modification is required for the application to
use MPTCP [18]. In this work, we expose information at MPTCP layer to an mDASH client
player to improve user experience in terms of energy, traffic cost, and streaming quality. Even
though our client player is designed for this modified MPTCP, other TCP applications can still
work using standard MPTCP.

1252 Lim: Cost-Efficient Framework for Mobile Video Streaming using Multi-Path TCP

2.3 Streaming, Energy Efficiency, and MPTCP
MPTCP energy efficiency depends on the available bandwidths through each interface

(higher bandwidths are more efficient) and on transfer size (larger chunks spend relatively less
time in the slow start phase). The energy efficiency also depends on how often the cellular
interface is activated and deactivated, due to the high cost of the promotion and tail [23-26].
Therefore, MPTCP energy usage in video streaming can increase even more than typical file
downloads due to its ON-OFF traffic cycle, since each cycle triggers a promotion and tail,
incurring the fixed energy overhead. As an example, Fig. 2 shows the energy consumption of
Google Nexus 5 when retrieving the same 1332 sec video via two methods: direct download
with wget and streaming using a video player. In these experiments, we measure only the
energy consumption for the network transfer (measurement details are in Section 4). The
figure shows the energy consumption of TCP over 10 Mbps WiFi only and MPTCP over both
10 Mbps WiFi and 10 Mbps LTE. It presents averages over three experiments, with error bars
showing standard deviations. We use a state-of-art ABR scheme [6] for the streaming
experiments, but regardless of the ABR scheme, the video is almost always downloaded at the
maximum bit rate, since the bandwidth is sufficient to support it. Thus, for a fair comparison,
the video chunks retrieved by wget are the ones encoded at the maximum bit rate.
As shown in Fig. 2, in the streaming case, the energy consumption of MPTCP is almost twice

that of TCP over WiFi, even though it yields the same average bit rate. Comparing streaming
with the wget download, we see that MPTCP streaming consumes nearly 40% more energy
(410J) than the wget download due to the promotion and tail overhead, while TCP over WiFi
streaming yields almost same energy consumption to the wget download since WiFi has
negligible promotion and tail costs. This shows that the ON-OFF pattern in ABR streaming
over MPTCP incurs additional energy costs. In this scenario, it makes sense to utilize only the
WiFi for streaming, since WiFi alone can support high quality streaming, and the power
consumed is lower. However, in the case of poor WiFi, all interfaces may need to be utilized
to preserve video streaming quality. Given the variability in network bandwidth, this shows
that dynamic fine-grained control of MPTCP at run time may be advantageous, to ensure good
streaming quality while minimizing power consumption and cellular data usage.

Fig. 2. Streaming vs. File Download using TCP over WiFi and MPTCP

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1253

3. Proposed Framework

3.1 Overview
mDASH is a framework that enables streaming clients to obtain high quality video streaming

while reducing energy consumption and cellular data usage compared to DASH over standard
MPTCP. It dynamically manages path usage based on expected energy efficiency, and
accordingly adjusts the encoding bit rate of the requested video and the burst size of traffic.
By avoiding the use of cellular paths that are not needed to maintain streaming quality, it also
reduces the amount of cellular traffic and the corresponding expense. Note that mDASH
requires changes only to the client-side, not the server-side: therefore, a standard DASH
streaming server can work with mDASH clients.
Fig. 3 presents the architecture of our mDASH framework. mDASH consists of several

components, two that reside in the Kernel and the remainder in user space, including the video
player. The Network Interface Monitor (NIM) is implemented in the kernel. It measures
throughput for individual MPTCP subflows and makes that information available to user-
space. The Path Usage Processor (PUP) also deployed in the kernel, dynamically enables,
and disables network interfaces for individual MPTCP flows, based on control from user-
space. The Bandwidth Predictor (BWP) receives information from the NIM and predicts
available bandwidth for MPTCP sub-flows. The Download Controller (DLC) monitors
downloads and determines whether video chunk downloads will finish before they are needed.
Finally, the Path Usage Controller (PUC) decides the paths to use, according to a
parameterized energy model and information retrieved from the BWP. The PUC then passes
activation and deactivation commands to the PUP.

Fig. 3. mDASH Architecture

1254 Lim: Cost-Efficient Framework for Mobile Video Streaming using Multi-Path TCP

3.2 Kernel-Space Components
1) Path Usage Processor (PUP)

 The PUP activates or deactivates interfaces according to commands from the PUC.
When the PUP receives a command to deactivate an interface, it must handle two possible
cases: there exists an established subflow on the interface, or there does not. If there
exists an established subflow, the PUP de-prioritizes any subflow using that interface,
using the MP_PRIO option [18], which changes subflow priority. An MP_PRIO option
is added to all subsequent packets for that MPTCP connection, indicating that any
subflows for that interface are low priority, and that other subflows should be preferred.
If there is no established subflow, the PUP continues to block any subflow establishment
over the interface. Once a path is deactivated, it remains inactive until the mDASH client
reactivates it. In the case of an activation command, the PUP processes it by unblocking
subflow establishment procedures and adding MP_PRIO headers that indicate normal
priority. Note that the decision logic for path usage is located at the path usage controller
in the mDASH client player. Once the kernel components are in place, any control
strategy can be applied without recompiling the kernel.

2) Network Interface Monitor (NIM)

 The NIM provides information about the amount of data transferred over each interface.
Based on the routing information at the Internet layer, the NIM identifies the interfaces
associated with each subflow. To this end, the NIM checks the destination entry of the
socket as follows: The destination entry (struct dst_entry) includes a pointer to the
associated network device (struct net_device *dev). This pointer has a name of the
interface and another pointer to the wireless device information (struct wireless_dev
*ieee80211_ptr). Thus, the NIM checks if dev of a socket has a valid ieee80211_ptr to
identify whether a socket is for a connection over a WiFi interface [12, 28].

Both the NIM and the PUP provide kernel interfaces to clients. In our current
implementation, a client must have super-user access to deliver control commands to the
kernel. By extending a user-level API such as setsocketopt, our framework can work without
super-user access. However, Extending the APIs to allow non-privileged access to clients we
leave as future work.

3.3 User-Space Components
1) Bandwidth Predictor (BWP)

 The BWP predicts future throughputs of all active subflow based on samples. Once a
chunk download completes, the BWP computes a bandwidth sample as transferred bytes
over each interface divided by the chunk download time. Based on collected samples,
BWP applies a Holt-Winters time-series forecasting algorithm [27] to obtain
predictions. If an interface becomes inactive during or at the end of a chunk download,
the BWP will not be able to collect any throughput information from that interface. In
this case, the BWP uses the previous prediction based on old observed samples.

2) Download Controller (DLC)

 The DLC monitors the download progress of each chunk to ensure smooth streaming
with efficient traffic shaping. If the DLC detects a buffer depletion during a chunk
download due to a sudden bandwidth drop, the DLC tries to cancel the current download

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1255

and choose a chunk with a proper bit rate for the network bandwidth measured by the
DLC. To this end, the DLC individually monitors download bandwidth for a chunk and
it abandons a download if the buffer level becomes lower that a threshold and the
remaining download time is expected to be longer than the buffer level (i.e., expecting
a buffer-depletion) like the download abandonment mechanism in [46]. In this paper,
we use 2𝐵𝐵𝐾𝐾/3 for the threshold, where 𝐵𝐵𝐾𝐾 is the playback buffer level at the beginning
of 𝑘𝑘th chunk download. Note that the DLC does not cancel the current download and
continues with the current chunk if the expected chunk size of the new bit rate is larger
than the remaining amount of the current chunk download. Once detecting the
possibility of buffer depletion, the DLC signals the path usage controller, notifying it
that more bandwidth is required, forcing PUC to activate all available network
interfaces.
 Recall that the client player stops downloading chunks when the buffer reaches the
maximum buffer size 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 . After then, the player periodically starts downloads,
resulting in continuous cellular tail energy consumption if the cellular interface is in use.
Transferring data in large bursts is thus more energy efficient for cellular interfaces due
to such tail overhead. To mitigate unnecessary energy consumption for the cellular tail
state, the DLC dynamically adjusts 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 according to the buffer level as with [42]. If
the network bandwidth is sufficient, it takes short time for the client to fill the buffer to
the maximum level. In this case, the client does not download for a while, and then it
tries to download a small number of chunks after consuming for playback, which results
in continuous ON-OFF traffic patterns. To mitigate such ON-OFF traffic patterns, if the
buffer level is larger than a threshold 𝐵𝐵𝑡𝑡ℎ, the DLC increases 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 by 𝐿𝐿 seconds up to
𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 to trigger a longer download (a large burst transfer), and thus reduces the energy
waste of cellular tails. However, 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 must be constrained since a mobile device has
limited memory and buffering large amounts can be wasteful if a user does not play the
entire buffered video.

3) Path Usage Controller (PUC)
The PUC dynamically decides what paths to use according to energy efficiency when

the client initiates a chunk download. By doing so, it also reduces data usage over an
unneeded interface. To this end, the PUC utilizes an energy model for each interface to
estimate the energy consumption for downloading a specific amount of data based on
predicted bandwidth. There exists a large literature about the energy models of mobile
devices concerning bandwidth, signal strength, simultaneous use of interfaces, etc. [11,
12, 23, 24, 25, 26]. In this work, we utilize an existing parameterized energy model
described in [11, 12].
Even though the PUC is designed to deal with all possible path combinations, we focus

on the PUC cases that switch between only using WiFi and using both WiFi and LTE,
since WiFi is typically free for use and its energy overhead is relatively small compared
to cellular interfaces. Assume that a device retrieves streaming video through MPTCP
over WiFi and LTE. When the 𝑘𝑘th chunk download starts, the expected download size
𝑀𝑀𝑘𝑘� and the transfer size through the WiFi and LTE interfaces 𝑀𝑀𝑘𝑘

𝑊𝑊� & 𝑀𝑀𝑘𝑘
𝐿𝐿 can be

calculated, respectively:

𝑀𝑀𝑘𝑘� = Rk × max(⌈(𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐵𝐵𝑘𝑘)/𝐿𝐿⌉ × 𝐿𝐿, 𝐿𝐿) (1)

𝑀𝑀𝑘𝑘
𝑊𝑊� = 𝑀𝑀𝑘𝑘� × 𝐶𝐶𝑘𝑘

𝑊𝑊�

𝐶𝐶𝑘𝑘
𝑊𝑊� +𝐶𝐶𝑘𝑘

𝐿𝐿� , 𝑀𝑀𝑘𝑘
𝐿𝐿� = 𝑀𝑀𝑘𝑘� −𝑀𝑀𝑘𝑘

𝑊𝑊� (2)

1256 Lim: Cost-Efficient Framework for Mobile Video Streaming using Multi-Path TCP

, where 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum buffer level, 𝐿𝐿 is the chunk length in seconds, and 𝐶𝐶𝑘𝑘𝑊𝑊�
and 𝐶𝐶𝑘𝑘𝐿𝐿� are the predicted bandwidths of WiFi and LTE for 𝑘𝑘 -th chunk download,
respectively.

Given the expected transfer sizes and predicted bandwidths, the energy model
provides the expected energy consumption of TCP over WIFI/LTE and MPTCP. For
example, 𝐸𝐸𝑊𝑊(𝑀𝑀𝑘𝑘,𝐶𝐶𝑘𝑘𝑊𝑊) returns the expected energy consumption of TCP over WiFi
when transferring 𝑀𝑀𝑘𝑘 bytes with ,𝐶𝐶𝑘𝑘𝑊𝑊 bps. By comparing the expected power costs for
the different configurations, the PUC selects the most energy efficient path usage for the
next chunk download.
 However, for smooth streaming, the PUC needs to guarantee that its decision does not
trigger a buffer depletion, particularly when deciding to use only one interface. To
prevent this, the PUC conservatively checks one more condition before switching to use
only one interface based solely on energy efficiency: the predicted bandwidth of the
selected interface must increase the buffer level after a chunk download with the chosen
bit rate. In addition, the PUC may receive a signal to activate all available interfaces
from the DLC in the middle of a chunk download: the DLC notifies the PUC after
abandoning the current download and attempting to lower the bit rate when it recognizes
that the chunk download with the currently selected bit rate cannot complete without
depleting the buffer. In this case, to quickly prevent buffer depletion and a resulting
playback stall, the PUC activates all subflows.

Note that when the PUC deactivates an interface, the BWP cannot obtain any bandwidth
observations. To provide a minimum level of information about all interfaces for the BWP at
the beginning, the PUC activates all available subflows for 𝜏𝜏 seconds at the beginning of an
MPTCP connection: we choose 𝜏𝜏 = 10s for the implementation.

4. Evaluation

4.1 Quality Metrics
We use following performance metrics to compare streaming strategies:
• Energy: we measure the amount of energy consumed to complete the entire playback,

excluding the baseline energy consumption to play the video without any
communication and disruption (see our experimental setup in Section 4.3 for details).

• Average bit rate: This is the average of the downloaded bit rates while downloading all
chunks, i.e., (∑ 𝑅𝑅𝑘𝑘𝐾𝐾

𝑘𝑘=1)/𝐾𝐾 where 𝐾𝐾 is the total number of chunks and 𝑅𝑅𝑘𝑘 is the bit rate
of the 𝑘𝑘th chunk.

• Number of bit rate changes: This is a count for bit rate changes, i.e., the number of
times when the bit rate of a downloading chunk becomes different from the previous
one, i.e., ∑ 1(𝑅𝑅𝑘𝑘−1 ≠ 𝑅𝑅𝑘𝑘𝐾𝐾

𝑘𝑘=2).
• Number of rebufferings: This is the number of times a playback stalls due to rebuffering.
• Total rebuffering duration: This is defined as the amount of time spent in the

rebuffering phase, while waiting for the video buffer to fill, during the entire playback.
• Fraction of traffic downloaded over the LTE cellular interface.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1257

4.2 Adaptive Bit Rate Schemes and Test Video
We utilize the following ABR schemes to evaluate mDASH:
• Tian: Tian et al. [5] suggest a feedback controller to control the playback buffer level

according to predicted throughputs, the buffer level, and its trend. In our experiments,
the control parameter 𝐾𝐾𝑝𝑝 is set to 0.1 as described in [5].

• BBA: Huang et al. [6] implement a rate adaptation scheme that chooses bit rates as a
function of the playback buffer level. They evaluate its performance through Netflix
deployment. We use 20s and 70s for the reservoir and cushion parameters respectively.

• BOLA: Spiteri et al. [8, 38] propose BOLA, a buffer-based adaptation scheme that
minimizes the drifts of buffer level, i.e., to try to maintain a stable buffer size. BOLA is
now part of ABR schemes in the official DASH reference player dash.js [38]. BOLA
also abandons the current download if the score of the currently selected bit rate
becomes lower than that predicted from another bit rate. We set the parameter 𝛾𝛾 to
5.0/𝐿𝐿 = 1.0 and use their log-based utilization function.

Several approaches have been recently proposed to utilize artificial intelligence algorithms
for video streaming: Mao et al. [39] and Huang et al. [40] propose ABR schemes that utilize
Deep Reinforcement Learning. Lee et al [41] implement PERCEIVE using an LSTM (Long
Short Term Memory) model. Note that mDASH can be coupled with such kinds of ABR
schemes as well. However, even AI inferences require a large computation overhead, resulting
in high energy consumption, which can overwhelm communication and streaming costs. Also,
mobile devices typically have a lack of computing resources and power supply to process such
complex operations. Therefore, we choose the above schemes that require less computation
overhead than AI-based schemes, minimizing the effect of energy consumed by ABR schemes
themselves.

The common parameters 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 (maximum buffer level) and 𝐿𝐿 are set to 100s and 5s,
respectively. For the experiments, we select a video clip from [29]. The length and resolution
of the video clip are 1332 seconds long and 2160p (3840 by 2160 pixels), respectively. We set
the streaming server to have six representations with 144p to 1080p resolutions as Youtube
does. To this end, we re-encode the video clip at each resolution and create DASH
representations with 5s chunks (𝐿𝐿 = 5), which requires bit rates from 0.26 Mbps to 8.47 Mbps.

Table 1. ABR Parameters

 Parameter Description

Common
L = 5s Chunk Length

𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 = 100s Maximum buffer level
where a player stops downloading chunks

Tian [5]
𝑝𝑝 = 0.1 Weight in buffer size adjustment factor

𝑞𝑞0 = 70s Reference buffer level

BBA [6]
𝑟𝑟 = 20s Reservoir

𝑐𝑐𝑐𝑐 = 70s Cushion

BOLA [8] 𝛾𝛾 = 1.0 Input weight parameter

1258 Lim: Cost-Efficient Framework for Mobile Video Streaming using Multi-Path TCP

In our experiments, all ABR schemes begin by downloading a chunk at the lowest bit rate,
i.e., 0.26 Mbps for 144p. Note that without the mDASH framework support, Tian, BBA, and
BOLA always simultaneously utilize both the WiFi and LTE interfaces. The buffer adjustment
parameters of mDASH framework, 𝐵𝐵𝑡𝑡ℎ and 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀, are set to 70s and 300s, respectively. Table
1 summarizes the parameters used for the ABR schemes.

4.3 Experiment Method
We use a Google Nexus 5 running Android modified with our mDASH implementation. The

mobile device is connected to the Internet through a WiFi access point and AT&T LTE, i.e., it
has WiFi and cellular interfaces. Note that a default primary interface is an interface to initiate
a connection. In the experiments, we set WiFi as a default primary interface.

The mobile device communicates with a server running Ubuntu Linux 12.04 with the
MPTCP implementation [30]. The server has a single Gigabit Ethernet interface connected to
a campus network. We use Apache 2.2.22 as the HTTP server for the DASH video contents
and enable HTTP persistent connections with the default Keep Alive Timeout (5 sec).
We collect energy traces using Qualcomm's Trepn Profiler [31] while setting the display

brightness level of the mobile device to the minimum and connecting the device to external
power after removing its battery. Energy consumption can come from two sources: the energy
to play the video on the display, and the energy to download the video over the network. To
distinguish these sources, we measure the energy consumption when the device completes
playback of the video file stored in flash memory using the same settings. This measures the
playback cost in isolation from the network.

For experiments, we have implemented the mDASH framework and ABR schemes in the
Google Nexus 5 using ExoPlayer [32]. Fig. 4 exhibits a screenshot, which is measuring
streaming quality, download activities, and energy/cellular usage, running our implementation
at the device. For the experiments, we utilize a set of public cellular bandwidth traces [33].
We randomly take 30 combinations using the throughput traces as the bandwidth trace of each
interface (we also conduct trace-driven simulations for all possible combinations and observe
similar results to the experiments). In each experiment, for each bandwidth scenario, we rate-
limit the bandwidths to match those from the chosen trace scenario. Rate-limiting is performed
on the server-side using the Linux traffic control utility tc [34]. Note that the cost gain achieved
by mDASH depends on bandwidth scenarios: if WiFi bandwidth is consistently low to support
streaming quality, mDASH continues to utilize LTE, resulting in similar costs compared to
streaming over MPTCP. If WiFi bandwidth is enough to support the highest streaming quality,
mDASH never uses LTE, maximizing the cost gain.

Fig. 4. mDASH implementation

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1259

4.4 Results
Now we investigate experimentally whether mDASH provides greater energy efficiency and

lower cellular data usage for the existing DASH strategies. In addition to using standard
MPTCP, we also evaluate the ABR schemes over eMPTCP, which is an MPTCP variant to
improve the energy efficiency with minimal impact on download latency [12]. Note that
eMPTCP is designed to work at the transport layer without any application awareness:
eMPTCP monitors subflow status at the transport layer, such as available bandwidth, and
dynamically decides the most energy-efficient path usage. By comparing the three ABR
algorithms with eMPTCP against their counterparts using mDASH, we can evaluate the
benefit of application awareness.

Fig. 5, 6, and 7 present Whisker plots or CDFs of the metrics for each ABR scheme. Table
2 also lists the average values of each metric. As shown in Fig. 5(a), both eMPTCP and
mDASH enable the ABRs to reduce energy consumption. Tian, BBA, and BOLA with
eMPTCP exhibit 15.1%, 2.8%, and 6.5% less energy consumption than with MPTCP. mDASH
yields average energy savings of 18.1%, 14.8%, and 7.2% compared to Tian, BBA, and BOLA
with MPTCP, respectively. This shows that mDASH achieves more energy savings than
eMPTCP, across all ABR schemes.

(a) Energy Consumption

(b) Average Bit Rate

(c) # of Bit Rate Changes

(d) LTE Fraction

Fig. 5. Comparison with MPTCP, eMPTCP, and mDASH

eMPTCP and mDASH slightly degrade the average bit rate while saving energy. As shown

in Fig. 5(b) and Table 2, Tian, BBA, and BOLA using eMPTCP exhibit 4.9%, 13.7%, 1.2%
lower average bit rates than using MPTCP, respectively. In contrast, mDASH decreases the
average bit rate of Tian and BBA by 2.4% and 5.9%, which are smaller degradation than
eMPTCP. Compared to using BOLA with MPTCP, using mDASH improves the average bit

1260 Lim: Cost-Efficient Framework for Mobile Video Streaming using Multi-Path TCP

rate by 4.1%. This shows that mDASH seeks to maintain better streaming quality than
eMPTCP while saving energy. This is due to the application awareness of mDASH to satisfy
application requirements, while eMPTCP only tries to minimize energy consumption without
any application awareness.
 Using eMPTCP or mDASH, the ABRs bit rate changes more frequently. In Fig. 5(c), we
observe that the ABRs with eMPTCP exhibit the highest average number of bit rate changes,
followed by those with mDASH and MPTCP. mDASH yields slightly more number of bit
rate changes than MPTCP since it switches bit rates if a buffer depletion is expected.

(a) Tian

(b) BBA

(c) BOLA

Fig. 6. Total Rebuffering Duration with MPTCP, eMPTCP, and mDASH

(a) Tian

(b) BBA

(c) BOLA

Fig. 7. Number of Rebufferings with MPTCP, eMPTCP, and Mdash

Table 2. Average Metrics for ABR Schemes

Tian BBA BOLA

MPTCP eMPTCP mDASH MPTCP eMPTCP mDASH MPTCP eMPTCP mDASH

Energy (J) 1273.53 1081.09 1042.68 1364.51 1325.92 1163.23 1266.86 1184.93 1175.84

LTE
Fraction (%) 47.34 34.32 33.60 48.67 34.19 37.93 48.12 33.64 35.71

Avg. Bit Rate
(Mbps) 1.64 1.56 1.60 2.04 1.76 1.92 1.72 1.70 1.79

of Bit Rate
Changes 25.73 31.13 28.97 36.53 41.6 36.3 24.17 90.2 65

Total
Rebuffering
Duration (s)

9.99 22.20 13.65 9.38 17.41 13.41 2.83 10.61 0.19

of
Rebuffering 9.08 9.25 7.88 8.80 9.50 9.15 7.07 8.85 2.89

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1261

As can be seen in Fig. 5(d) and Table 2, both eMPTCP and mDASH successfully reduce
cellular data usage by adaptively changing path usage. By reducing cellular path usage, which
usually requires more energy, both obtain energy savings. Using eMPTCP reduces cellular
data usage by 13.0%, 14.5%, and 14.5% for Tian, BBA, and BOLA, respectively, while
mDASH saves LTE data usage by 13.7%, 10.7%, and 12.4%. Note that mDASH causes ABRs
to exploit the cellular path more aggressively than eMPTCP. Even with more use of the cellular
path, mDASH obtains better energy savings than eMPTCP. This demonstrates that mDASH
successfully shapes burst (large) transfers for streaming, resulting in more energy-efficient use
of cellular paths than sporadic small transfers.
As shown in Fig. 6, ABRs with mDASH and eMPTCP suffer from total rebuffering durations

more than MPTCP. In the case of Tian, 67% of the bandwidth scenarios with MPTCP do not
experience rebuffering at all, while only 50% do with eMPTCP and 60% do with mDASH. In
the case of BBA and BOLA, mDASH avoids rebuffering more than MPTCP and eMPTCP:
there are no rebufferings in 80% of the bandwidth scenarios with mDASH while there are 76%
with MPTCP and 73% with eMPTCP. In the average comparison in Table 2, Tian and BBA
with mDASH yield longer rebuffering durations than with MPTCP and shorter than with
eMPTCP, while BOLA significantly shortens rebuffering duration by using mDASH. This
shows that eMPTCP extremely tries to reduce energy consumption, thus, it experiences
frequent long rebufferings. In contrast, mDASH does a similar or slightly larger number of
rebufferings than MPTCP.
 Fig. 7 presents the CDF of the number of rebufferings with each streaming scheme. As shown
in Fig. 7, Tian and BBA with mDASH yield slightly more rebufferings than with MPTCP and
less than with eMPTCP while BOLA with mDASH does the smallest number of rebufferings.
In the averages shown in Table 2, Tian and BOLA experience the least frequent rebufferings
with mDASH. We see that BOLA works best with mDASH while effectively reducing energy
and cellular data usage and preserving streaming qualities.

5. Related Work
Several approaches have been proposed to investigate and address topics in video streaming

under mobile and harsh environments, such as bandwidth estimation errors, limited energy
supply, smoothness in streaming quality, fairness across users, and multipath streaming.
However, there are a few rigorous studies on enhanced MPTCP streaming for reducing costs
in multiple aspects, such as energy and cellular usage, using a real implementation and
experimental measurements.
Corbillion [35] proposes a scheduler for improving the performance of video streaming over

MPTCP. Their approach needs to modify a video sender to work with the proposed scheduler.
Also, they evaluate their approach via trace-driven simulation.

Wu et al. [36] examine streaming MPTCP environments, it does not consider DASH
streaming, so their quality metric is based on distortion. They do not consider other costs such
as energy and cellular data usage.
Ojanpera et al. [37] evaluate rate adaptation schemes with and without the support of the

proposed network management system under MPTCP enabled networks. However, in this
study, MPTCP is not integrated with their scheme, so MPTCP does not play any other role
except for providing more bandwidth and the management scheme does not consider any
MPTCP specific issues such as energy consumption.

Ferlin et al. [43] propose a framework that integrates forward error correction (FEC) into
MPTCP for latency-sensitive application traffic such as video streaming. They implement an

1262 Lim: Cost-Efficient Framework for Mobile Video Streaming using Multi-Path TCP

XOR-based FEC scheme for MPTCP that yields low loss rates with relatively small FEC
overhead. However, this work just focuses on reducing latencies without considering multiple
aspects in video streaming such as energy usage.

Elgabli and Agarwal [44] formulate an optimization problem for streaming QoE subject to
the available bandwidth and link preferences and propose an online algorithm to solve it. Even
though their approach can be used to mitigate cellular usage by setting the preference, it does
not consider a real energy model. Therefore, there is no guarantee that their solution yields the
best energy efficiency. Also, this work is just based on the trace-driven simulation.

Xing et al. [45] propose an MPTCP scheduler for live video streaming. By dealing with the
out-of-order packet problem caused by packets from multiple paths with different latencies,
their proposed scheduler provides sufficient throughput for upper-layer applications.
Although their scheduler enables streaming clients to obtain better throughput, it does not
consider issues on energy and cellular usage.
The most closely related piece of work appeared recently by Han et al. [20]. MP-DASH [20]

is a path scheduling framework for video streaming in MPTCP that schedules video chunks to
preserve user quality of experience: MP-DASH activates a cellular subflow only when a WiFi
subflow does not provide enough bandwidth to meet deadlines for video chunks. We compare
our mDASH framework with MP-DASH as follows: First, MP-DASH does not deal with other
streaming-related operations: it only manages path usage to satisfy deadline constraints. In
contrast, our framework consists of more components for controlling streaming behaviors,
such as DLC for abandonment and burst traffic shaping, to overcome situations of QoE
degradation that can be encountered by bandwidth dynamics while controlling path usage.
Second, although the MP-DASH path control operations reduce cellular usage and
consequently power consumption, MP-DASH implementation does not rigorously take
account for cost optimization in terms of energy and cellular usage; they also quantify energy
use via simulation, whereas we measure energy directly on a smartphone. Third, since the MP-
DASH path scheduler locates at the kernel and operates based on given chunk size and
deadline, the MP-DASH streaming player needs to continuously call the scheduling function
at the kernel, whereas our PUP sends the control signal to the kernel only when path usage
changes are required while it reads interface information exposed from the kernel. Lastly, MP-
DASH needs to modify both the client and server, whereas ours requires only client-side
changes, allowing incremental deployability.

6. Conclusion
This paper proposes, implements, and evaluates mDASH, a cost-efficient framework for

mobile video streaming over MPTCP. mDASH framework provides abstractions for its
components so that it can extend for new mobile devices and communication technologies
such as 5G by applying corresponding models. An mDASH client player dynamically chooses
a proper video bit rate together with energy-efficient path usage that avoids unnecessary use
of the cellular interface. Our experiments show that mDASH successfully saves energy and
cellular data usage, compared to the ABR schemes running over standard MPTCP, while still
yielding similar streaming quality.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1263

References
[1] Sandvine, “The Mobile Internet Phenomena Report,” 1H 2020. [Online]. Available:

https://www.sandvine.com/download-report-mobile-internet-phenomena-report-2020-sandvine
[2] T. Stockhammer, “Dynamic adaptive streaming over HTTP – standards and design principles,” in Proc.

of ACM MMSys, pp. 133–144, 2011. Article (CrossRef Link)
[3] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and stability in HTTP-based adaptive

video streaming with Festive,” IEEE/ACM Transactions on Networking, 22(1), 326–340, Feb 2014.
Article (CrossRef Link)

[4] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. Begen, and D. Oran, “Probe and adapt: Rate adaptation for
HTTP video streaming at scale,” IEEE Journal on Selected Areas in Communications, 32(4), 719–733,
April 2014. Article (CrossRef Link)

[5] G. Tian and Y. Liu, “Towards agile and smooth video adaptation in dynamic HTTP streaming,” in Proc.
of ACM CoNEXT, pp. 109–120, 2012. Article (CrossRef Link)

[6] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A buffer-based approach to rate
adaptation: Evidence from a large video streaming service,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 4, pp. 187–198, 2014. Article (CrossRef Link)

[7] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic approach for dynamic adaptive video
streaming over HTTP,” in Proc. of ACM SIGCOMM, pp. 325–338, 2015. Article (CrossRef Link)

[8] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: Near-optimal bitrate adaptation for online
videos,” in Proc. of IEEE INFOCOM, 2016. Article (CrossRef Link)

[9] Y.-C. Chen, Y.-S. Lim, R. J. Gibbens, E. Nahum, R. Khalili, and D. Towsley, “A measurement-based
study of Multipath TCP performance in wireless networks,” in Proc. of ACM IMC, pp. 455–468, Oct.
2013. Article (CrossRef Link)

[10] S. Deng, R. Netravali, A. Sivaraman, and H. Balakrishnan, “WiFi, LTE, or both? Measuring multi-
homed wireless Internet performance,” in Proc. of ACM IMC, pp. 181-194, 2014.
Article (CrossRef Link)

[11] Y.-S. Lim, Y.-C. Chen, E. M. Nahum, D. Towsley, and R. J. Gibbens, “How green is multipath TCP for
mobile devices?,” in Proc. of ACM AllThingsCellular, pp. 3–8, 2014. Article (CrossRef Link)

[12] Y.-S. Lim, Y.-C. Chen, E. M. Nahum, D. Towsley, R. J. Gibbens, and E. Cecchet, “Design,
implementation, and evaluation of energy-aware multi-path TCP,” in Proc. of ACM CoNEXT, pp. 1-13,
2015. Article (CrossRef Link)

[13] Y.-S. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens, “ECF: An MPTCP Path Scheduler to Manage
Heterogeneous Paths,” in Proc. of ACM CoNEXT, pp. 147-159, 2017. Article (CrossRef Link)

[14] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley, “Improving datacenter
performance and robustness with multipath TCP,” in Proc. of ACM SIGCOMM, pp. 266–277, 2011.
Article (CrossRef Link)

[15] C. Raiciu, D. Niculescu, M. Bagnulo, and M. J. Handley, “Opportunistic mobility with multipath TCP,”
in Proc. of ACM MobiArch, pp. 7–12, 2011. Article (CrossRef Link)

[16] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O. Bonaventure, and M. Handley, “How
hard can it be? Designing and implementing a deployable multipath TCP,” in Proc. of USENIX NSDI,
pp. 399–412, 2012. Article (CrossRef Link)

[17] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design, implementation and evaluation of
congestion control for multipath TCP,” in Proc. of USENIX NSDI, pp. 99–112, 2011.
Article (CrossRef Link)

[18] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural guidelines for multipath TCP
Development,” RFC 6182 (Informational), 2011. [Online]. Available:
https://datatracker.ietf.org/doc/rfc6182/

[19] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP extensions for multipath operation with
multiple addresses,” RFC 6824, 2013. [Online]. Available: https://datatracker.ietf.org/doc/rfc6824/

[20] B. Han, F. Qian, L. Ji, V. Gopalakrishnan, and N. Bedminster, “MP-DASH: Adaptive video streaming
over preference-aware multipath,” in Proc. of ACM CoNEXT, pp. 129–143, 2016.
Article (CrossRef Link)

https://www.sandvine.com/download-report-mobile-internet-phenomena-report-2020-sandvine
https://doi.org/10.1145/1943552.1943572
https://doi.org/10.1109/TNET.2013.2291681
https://doi.org/10.1109/JSAC.2014.140405
https://doi.org/10.1145/2413176.2413190
https://doi.org/10.1145/2740070.2626296
https://doi.org/10.1145/2785956.2787486
https://doi.org/10.1109/INFOCOM.2016.7524428
https://doi.org/10.1145/2504730.2504751
https://doi.org/10.1145/2663716.2663727
https://doi.org/10.1145/2627585.2627596
https://doi.org/10.1145/2716281.2836115
https://doi.org/10.1145/3143361.3143376
https://doi.org/10.1145/2018436.2018467
https://doi.org/10.1145/1999916.1999919
https://dl.acm.org/doi/10.5555/2228298.2228338
https://dl.acm.org/doi/10.5555/1972457.1972468
https://datatracker.ietf.org/doc/rfc6182/
https://datatracker.ietf.org/doc/rfc6824/
https://doi.org/10.1145/2999572.2999606

1264 Lim: Cost-Efficient Framework for Mobile Video Streaming using Multi-Path TCP

[21] C. James, E. Halepovic, M. Wang, R. Jana, and N. Shankaranarayanan, “Is multipath TCP (mptcp)
beneficial for video streaming over DASH?,” in Proc. of IEEE MASCOTS, pp. 331–336, 2016.
Article (CrossRef Link)

[22] A. Rao, Y.-s. Lim, C. Barakat, A. Legout, D. Towsley, and W. Dabbous, “Network characteristics of
video streaming traffic,” in Proc. of ACM CoNEXT, pp. 1–12, 2011. Article (CrossRef Link)

[23] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy consumption in mobile
phones: A measurement study and implications for network applications,” in Proc. of ACM IMC, pp.
280–293, 2009. Article (CrossRef Link)

[24] J. Huang, Q. Feng, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck, “A close examination of
performance and power characteristics of 4G LTE networks,” in Proc. of ACM MobiSys, pp. 225–238,
2012. Article (CrossRef Link)

[25] N. Ding, D. Wagner, X. Chen, Y. C. Hu, and A. Rice, “Characterizing and modeling the impact of
wireless signal strength on smartphone battery drain,” in Proc. of ACM SIGMETRICS, pp. 29–40, 2013.
Article (CrossRef Link)

[26] A. Nika, Y. Zhu, N. Ding, A. Jindal, Y. C. Hu, X. Zhou, B. Zhao, and H. Zheng, “Energy and performance
of smartphone radio bundling in outdoor environments,” in Proc. of WWW, pp. 809–819, 2015.
Article (CrossRef Link)

[27] P. J. Rockwell and R. A. Davis, Introduction to Time Series and Forecasting, Springer, 1994. [Online].
Available: https://link.springer.com/book/10.1007/978-3-319-29854-2

[28] Y.-S. Lim, "On Leveraging Multi-Path Transport in Mobile Networks," Doctoral Dissertations, 890,
2017. Article (CrossRef Link)

[29] JackFrags. 4k gaming montage. [Online]. Available: https://4ksamples.com/4k-gaming-montage/
[30] C. Paasch and S. Barre, “Multipath TCP in the Linux kernel,”. [Online]. Available:

https://www.multipath-tcp.org
[31] Qualcomm. Trepn power profiler, [Online]. Available:

https://developer.qualcomm.com/forums/software/trepn-power-profiler
[32] Google. Exoplayer. [Online]. Available: http://google.github.io/ExoPlayer/.
[33] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Commute path bandwidth traces from 3G

networks: Analysis and applications,” in Proc. of ACM MMSys, pp. 114–118, 2013.
Article (CrossRef Link)

[34] Linux Foundation, Linux advanced routing and traffic control. [Online]. Available:
http://lartc.org/howto/.

[35] X. Corbillon, R. Aparicio-Pardo, N. Kuhn, G. Texier, and G. Simon, “Cross-layer scheduler for video
streaming over MPTCP,” in Proc. of ACM MMSys, pp. 1-12, 2016. Article (CrossRef Link)

[36] J. Wu, C. Yuen, B. Cheng, M. Wang, and J. Chen. “Streaming high-quality mobile video with multipath
TCP in heterogeneous wireless networks,” IEEE Transactions on Mobile Computing, 15(9), 2345–2361,
2016. Article (CrossRef Link)

[37] T. Ojanperä and J. Vehkaperä, “Network-assisted multipath dash using the distributed decision engine,”
in Proc. of IEEE ICNC, pp. 1–6, 2016. Article (CrossRef Link)

[38] K. Spiteri, R. K. Sitaraman, and D. Sparacio, “From Theory to Practice: Improving Bitrate Adaptation
in the DASH Reference Player,” ACM Transaction on Multimedia Computing, Communications, and
Applications, Vol. 15, No. 25, pp. 1-29, 2019. Article (CrossRef Link)

[39] H. Mao, R. Netravali, and M. Alizadeh, “Neural Adaptive Video Streaming with Pensieve,” in Proc. of
ACM SIGCOMM, pp. 197-210, 2017. Article (CrossRef Link)

[40] T. Huang, C. Zhou, X. Yao, R. Zhang, C. Wu, B. Yu, and L. Sun, “Quality-Aware Neural Adaptive Video
Streaming with Lifelong Imitation Learning,” IEEE Journal on Selected Areas in Communications, 38,
2324-2342, 2020. Article (CrossRef Link)

[41] J. Lee, S. Lee, J. Lee, S.D. Sathyanarayana, H. Lim, J. Lee, X. Zhu, S. Ramakrishnan, D. Grunwald, K.
Lee, S. Ha, “PERCEIVE: Deep Learning-Based Cellular Uplink Prediction Using Real-Time
Scheduling Patterns,” in Proc. of ACM MobiSys, pp. 377–390, 2020. Article (CrossRef Link)

[42] Y. Kang, “A Novel Bit Rate Adaptation using Buffer Size Optimization for Video Streaming,”
International Journal of Internet, Broadcasting and Communication, Vol.12, No.4, pp. 166-172, 2020.
Article (CrossRef Link)

https://doi.org/10.1109/MASCOTS.2016.75
https://doi.org/10.1145/2079296.2079321
https://doi.org/10.1145/1644893.1644927
https://doi.org/10.1145/2307636.2307658
https://doi.org/10.1145/2494232.2466586
https://doi.org/10.1145/2736277.2741635
https://link.springer.com/book/10.1007/978-3-319-29854-2
https://doi.org/10.7275/9461292.0
https://4ksamples.com/4k-gaming-montage/
https://www.multipath-tcp.org/
https://developer.qualcomm.com/forums/software/trepn-power-profiler
http://google.github.io/ExoPlayer/
https://doi.org/10.1145/2483977.2483991
http://lartc.org/howto/
https://dl.acm.org/doi/10.1145/2910017.2910594
https://doi.org/10.1109/TMC.2015.2497238
https://doi.org/10.1109/ICCNC.2016.7440600
https://doi.org/10.1145/3336497
https://doi.org/10.1145/3098822.3098843
https://doi.org/10.1109/JSAC.2020.3000363
https://doi.org/10.1145/3386901.3388911
https://doi.org/10.7236/IJIBC.2020.12.4.166

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1265

[43] S. Ferlin, S. Kucera, H. Claussen, and O. Alay, “MPTCP Meets FEC: Supporting Latency-Sensitive
Applications Over Heterogenous Networks,” IEEE/ACM Transactions on Networking, Vol. 26, No. 5,
pp. 2005-2018, 2018. Article (CrossRef Link)

[44] A. Elgabli and Vaneet Aggarwal, “SmartStreamer: Prefernce-Aware MultipathVideo Streaming over
MPTCP,” IEEE Transactions on Vehicular Technology, Vol. 68, No. 7, pp. 6975-6984, 2019.
Article (CrossRef Link)

[45] Y. Xing, K. Xue, Y. Zhang, J. Han, J. Li, J. Liu, and R. Li, “A Low-Latency MPTCP Scheduler for Live
Video Streaming in Mobile Networks,” IEEE Transactions on Wireless Communications, Vol. 20. No.
11, pp. 7230-7242, 2021. Article (CrossRef Link)

[46] Y. Kang and Y.-S. Lim, “Bit Rate Adaptation Using Linear Quadratic Optimization for Mobile Video
Streaming,” Applied Sciences, Vol. 11, No. 1, 2021. Article (CrossRef Link)

Yeon-sup Lim is an assistant professor at Department of Convergence Security
Engineering in Sungshin Women's University. Before joining Sungshin Women’s University,
he was a research staff member at IBM T. J. Watson Research Center, Yorktown Heights,
NY USA from 2017 to 2020. He received the Ph.D. from College of Information and
Computer Sciences at University of Massachusetts Amherst under the supervision of
Professor Don Towsley. His research interests include the broad range of topics in the area of
networks, with emphasis on multipath transport protocol, mobile computing, Internet
measurement, and complex networks.

https://doi.org/10.1109/TNET.2018.2864192
https://doi.org/10.1109/TVT.2019.2915355
https://doi.org/10.1109/TWC.2021.3081498
https://doi.org/10.3390/app11010099

