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Abstract 

 
A self-organizing multiple unmanned aerial vehicles (multi-UAVs) deployment based on 
virtual forces has a difficulty in ensuring the quality-of-experience (QoE) of users because of 
the difference between the assumed center for users in a hotspot and an actual center for users 
in the hotspot. This discrepancy is aggravated in a non-uniform and mobile user distribution. 
To address this problem, we propose a new density based virtual force (D-VF) multi-UAVs 
deployment algorithm which employs a mean opinion score (MOS) as a metric of QoE. 
Because MOS is based on signal-to-noise ratio (SNR), a sum of users’ MOS is a good metric 
not only to secure a wide service area but to enhance the link quality between multi-UAVs and 
users. The proposed algorithm improves users’ QoE by combining virtual forces with a 
random search force for the exploration of finding multi-UAVs’ positions which maximize the 
sum of users’ MOS. In simulation results, the proposed deployment algorithm shows the 
convergence of the multi-UAVs into the position of maximizing MOS. Therefore, the 
proposed algorithm outperforms the conventional virtual force-based deployment scheme in 
terms of QoE for non-uniform user distribution scenarios. 
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1. Introduction 

An unmanned aerial vehicle (UAV) plays an important role in relaying data packets from 
users to a base station. Accordingly, for the purpose of reducing data transmission load in 
densely populated areas, the research on the deployment of multi-UAVs is being conducted 
actively [1], [2]. A UAV has a high mobility and a high probability of connecting line-of-sight 
(LoS) links with users [3], [4]. Hence, multi-UAVs can increase an energy efficiency and a 
spectrum utilization. Since a UAV has strict limitations on its communication range and 
battery capacity, the research for efficient multi-UAVs operation is spotlighted [5], [6]. The 
objectives of these researches are to cover many users within the range of multi-UAVs while 
maintaining the connection among the multi-UAVs [7], [8]. In [9], a circle packing approach 
is introduced for multi-UAVs deployment. This circle packing method aims to maximize the 
sum of the communication ranges of multi-UAVs. However, it is challenging to implement 
this method precisely because multi-UAVs have limited communication resources available. 
In [10], a self-organization scheme is adopted to deploy multi-UAVs in a military operational 
environment, where the multi-UAVs are deployed around sensors, relaying the sensors’ data 
to a back-office. Specifically, if the connections among the multi-UAVs are maintained, the 
distances among the multi-UAVs are increase; however, if the connections are lost, the 
distances are decreased. In [11] and [12], a self-organization technique for multi-UAVs 
deployment based on the concept of the virtual universal gravitational force is proposed. An 
attraction force and a repulsion force are reflected in those proposed virtual forces, which 
maintain the connections among the multi-UAVs. Maintaining these connections, each UAV 
moves to the nearest hotspot to serve users associated with it. In [13], a mean opinion score 
(MOS) is introduced as a performance metric for a multi-UAVs deployment method using 
reinforcement learning. MOS is a representative index of quality-of-experience (QoE) and can 
be used to improve communication performance [14], [15]. 
In [11], once ground users are located around hotspots, the virtual forces are employed to 
deploy multi-UAVs near the hotspots. However, in an unequal user distribution, there is a 
discrepancy between the centers of those hotspots and the actual centers of users. Because the 
centers of those hotspots are the working points of the virtual forces, this discrepancy causes 
a misplacement of the multi-UAVs and a decrease in the users’ QoE. Furthermore, when 
mobile users are considered, maintaining the users’ QoE is an even more challenging task. To 
overcome the problem caused by the discrepancy between the assumed centers of users and 
the actual centers of users and to maintain QoE for mobile users, we propose a multi-UAVs 
deployment algorithm, which combines a virtual force-based deployment method with a global 
optimization method adopting MOS as a performance metric. The proposed scheme enhances 
the QoE of users when mobile and unequal user distributions are considered. In [16], a deep 
reinforcement learning based dynamic QoE optimization for multi-UAVs is proposed. The 
authors improve QoE in the viewpoint of dynamic mobile edge computing (MEC) support and 
an efficient data offloading for the multi-UAVs; however, the movement of the multi-UAVs 
is not considered. Hence, if the dynamic algorithm in [16] is combined with the proposed 
deployment algorithm in this paper, a further performance enhancement in supporting MEC is 
expected. 
Because signal-to-noise ratio (SNR) is used in the calculation of MOS, if the multi-UAVs have 
good channel qualities in the links connected with users on densely populated areas, those 
users will have very high MOS values. Consequently, when the multi-UAVs approach their 
actual center of users, the sum of those users’ MOS increases. In a mobile users’ scenario, it 
is difficult to determine the optimal position of the multi-UAVs guaranteeing the 
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communication performance of the mobile users [17]. However, if the multi-UAVs move to 
the position where the sum of users’ MOS achieves the highest value, that position will be 
closer to the centers of users’ clusters, and the high communication performance will be 
attained. To maximize users’ MOS, the proposed algorithm includes a random force to prevent 
multi-UAVs from being stuck to a local optimal point. In addition, while keeping the links 
among the multi-UAVs being connected, the random search force combined with the other 
virtual forces searches for positions where the sum of users’ MOS can be maximized. In order 
to adopt the concept of the simulated annealing, as the searching round goes on, the random 
search force is gradually reduced, and a virtual force of leading the multi-UAVs to the optimal 
position, which is guaranteed to be so far best, gradually increases.  
In the literature, there are two different strategies in deploying multi-UAVs. One of them is to 
maximize the number of links between multi-UAVs and users while guaranteeing a minimum 
link quality [10], [11], and [12]. The other is to maximize the total throughput of a considered 
network [13] and [18]. The strategy of maximizing the number of links has a weakness in 
enhancing the links between the multi-UAVs and the users. To the contrary, the strategy of 
maximizing total throughput may neglect some isolated users resulting in a reduced service 
area. However, the proposed deployment algorithm strikes a good trade-off between the link 
maximization strategy and the throughput maximization strategy. Specifically, at initial phase, 
the proposed algorithm quickly spread the multi-UAVs over a wide area through a 
gravitational virtual force-based deployment scheme. Afterwards, the link quality is enhanced 
through a global search-based MOS maximization. This combined process shows an excellent 
performance both in increasing the number of link and in enhancing the quality of the links. 
To the best of our knowledge, this algorithm is novel and innovative. In addition, a thorough 
simulation study shows that the proposed algorithm, under various unequal user distribution, 
successfully finds the optimal multi-UAVs position where the QoE of users is maximized. 
Moreover, the results of the simulation study confirms that the proposed algorithm 
outperforms the conventional virtual force-based algorithm under various scenarios. 
The remainder of this paper is organized as follows: Section 2 describes a system model, 
Section 3 introduces the procedure of the proposed algorithm, and Section 4 compares the 
performances of the proposed algorithm with the conventional virtual force-based algorithm 
in both static and mobile environments. Section 5 concludes the paper. 

2. System Model 

2.1. Channel model 
An air-to-ground (ATG) model is adopted between a UAV and a user equipment (UE) [19]. 
A set of UAVs and a set of UEs are defined as 𝒦𝒦 = {1, 2,⋯ ,𝐾𝐾} and 𝒩𝒩 = {1, 2,⋯ ,𝑁𝑁}, 
respectively. The ATG model considers a probability of establishing a LoS link and a non-
LoS (NLoS) link between a UAV and a UE [20]. The following is a LoS probability between 
𝑘𝑘th UAV and 𝑛𝑛th UE. 
 

𝑃𝑃�𝐿𝐿𝐿𝐿𝐿𝐿,𝜃𝜃𝑘𝑘,𝑛𝑛� =
1

1 + 𝛼𝛼 exp �−𝛽𝛽�𝜃𝜃𝑘𝑘,𝑛𝑛 − 𝛼𝛼��
 , (1) 

 
where 𝛼𝛼 and 𝛽𝛽 are constants affected by an environment, 𝜃𝜃𝑘𝑘,𝑛𝑛 is the elevation angle formed 
by 𝑘𝑘th UAV and 𝑛𝑛th UE. 𝑃𝑃�𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝜃𝜃𝑘𝑘,𝑛𝑛� = 1 −  𝑃𝑃�𝐿𝐿𝐿𝐿𝐿𝐿,𝜃𝜃𝑘𝑘,𝑛𝑛� is satisfied, and the following 
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is an average path loss formula considering both the LoS and the NLoS links. 
 

𝑃𝑃𝑃𝑃 = 𝑃𝑃�LoS,𝜃𝜃𝑘𝑘,𝑛𝑛� ⋅ 𝐿𝐿LoS + 𝑃𝑃�NLoS,𝜃𝜃𝑘𝑘,𝑛𝑛� ⋅ 𝐿𝐿NLoS ,  (2) 
 
where 𝐿𝐿LoS and 𝐿𝐿NLoS are path loss for LoS and NLoS, respectively, and they are given by  
 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 20 log �
4𝜋𝜋𝑓𝑓c
𝑐𝑐
�+ 𝜂𝜂LoS , (3) 

 

𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 20 log �
4𝜋𝜋𝑓𝑓c
𝑐𝑐
�+ 𝜂𝜂NLoS , (4) 

 
where 𝑓𝑓𝑐𝑐 is the center frequency and 𝑐𝑐 is the speed of light. 𝐿𝐿LoS and 𝐿𝐿NLoS are calculated by 
adding an environment-dependent additional path loss to a free space propagation loss (FSPL). 
For convenience of calculation, additional path losses are averaged and denoted in 𝜂𝜂LoS and 
𝜂𝜂NLoS [21]. The following is an overall path loss equation. 
 

𝑃𝑃𝐿𝐿(𝑘𝑘,𝑛𝑛)�ℎ𝑘𝑘,𝑑𝑑𝑘𝑘,𝑛𝑛
′ �

= 20 log �
4𝜋𝜋𝑓𝑓c
𝑐𝑐
� + 20 log��ℎ𝑘𝑘2 + 𝑑𝑑𝑘𝑘,𝑛𝑛

′ 2�+ 𝑃𝑃�𝐿𝐿𝐿𝐿𝐿𝐿,𝜃𝜃𝑘𝑘,𝑛𝑛� ⋅ 𝜂𝜂LoS

+ 𝑃𝑃�𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝜃𝜃𝑘𝑘,𝑛𝑛� ⋅ 𝜂𝜂NLoS , 

(5) 

 
where ℎ𝑘𝑘 is the altitude of 𝑘𝑘th UAV, 𝑑𝑑𝑘𝑘,𝑛𝑛

′  is the horizontal distance between 𝑘𝑘th UAV and 𝑛𝑛th 
UE. 
 

2.2. Virtual force  
In [11], a virtual force is made up of an attractive force and a repulsive force. The attractive 
force between UAV 𝑘𝑘1 and UAV 𝑘𝑘2 is calculated as follows: 

 𝐹𝐹𝑘𝑘1,𝑘𝑘2
�����������⃗ = 𝐾𝐾𝑘𝑘1,𝑘𝑘2

 ×
1

�𝑑𝑑𝑘𝑘1,𝑘𝑘2�
2

������������������������������������⃗
 ,𝑑𝑑𝑘𝑘1𝑘𝑘2 < 𝑅𝑅c, (6) 

 
where 𝐾𝐾𝑘𝑘1,𝑘𝑘2

  is an attractive force factor, 𝑑𝑑𝑘𝑘1,𝑘𝑘2 is the distance between UAV 𝑘𝑘1 and UAV 𝑘𝑘2, 
and 𝑅𝑅c is the communication range of the UAVs. The repulsive force is calculated as follows: 
 

𝑓𝑓a���⃗ = 𝐾𝐾r × (𝑅𝑅opt − 𝑑𝑑𝑘𝑘1,𝑘𝑘2)������������������������������������������⃗  ,𝑑𝑑𝑘𝑘1,𝑘𝑘2 < 𝑅𝑅opt, (7) 
 
where 𝐾𝐾r is a repulsive force factor and 𝑅𝑅opt is a minimum distance to prevent collisions with 
neighboring UAVs. 
 

2.3. Quality-of-experience model  
In [14], MOS is a metric for evaluating the QoE of users, and the calculation of MOS for 
sender 𝑖𝑖 and receiver 𝑗𝑗 is as follows: 
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𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡) =  −𝐾𝐾1 ln�𝑑𝑑(𝑟𝑟𝑖𝑖)� + 𝐾𝐾2 , (8) 
 
where 𝑑𝑑(𝑟𝑟𝑖𝑖) is a delay time when a sender 𝑖𝑖 transfers data to a receiver 𝑗𝑗 at a data rate of 𝑟𝑟𝑖𝑖. 𝐾𝐾1 
and 𝐾𝐾2 are constants for calculating MOS. 

3. D-VF Algorithm 
A density based virtual force (D-VF) algorithm newly is proposed, which deploys the multi-
UAVs based on virtual forces with considering MOS. In [11], the virtual forces are used to 
locate multi-UAVs around hotspots and to maintain connections among the multi-UAVs. 
However, if UEs are not distributed uniformly around the hotspots, the communication link 
quality between the multi-UAVs and UEs will be severely deteriorated. 
As shown in Fig. 1, there are three major examples of non-uniform UE distributions around a 
hotspot. The blue points represent UEs, and a black point is a center point of the hotspot 
presumed by the virtual force method, and red triangles are the actual centers of the UEs. Fig. 
1(a) depicts that UEs are distributed unequally in a direction from the center of the hotspot to 
the right. In this case, the actual center of UEs and the center of the hotspot do not match, 
which results in the performance degradation. Fig. 1(b) depicts a scenario in which UEs spread 
horizontally around the center of a hotspot. In this case, although the actual center of UEs is 
close to the assumed center of the hotspot, it is desirable to split the UEs into small groups of 
two. Moreover, after splitting the UEs into two small groups, adding one more UAV is 
suggested as a better option. Fig. 1(c) depicts a situation in which many UEs are crowded 
around a hotspot. In this case, the assumed center of the hotspot and the center of UEs are very 
close to each other. However, more than a single UAV need to be deployed to support the 
numerous connections between the UAV and the UEs. When UEs are unequally crowded, D-
VF, which uses MOS metric, improves the quality of communication with UEs in hotspots.  
As the multi-UAVs approach their actual center of the UEs, the sum of the UEs’ MOS 
increases. For the multi-UAVs, pursuing the position achieving the highest total-MOS can 
reduce the discrepancy between the assumed centers of hotspots and the actual centers of UEs. 
For the deployment of the multi-UAVs, a maximization of the total-MOS and an exploration 
of a random searching for better position are introduced in [22]–[24]. In D-VF, local MOS and 
global MOS are newly introduced to maximize the coverage of the multi-UAVs and the total-
MOS of UEs. The local MOS of UAV 𝑘𝑘 in round 𝑡𝑡 is denoted as 𝐿𝐿𝑘𝑘(𝑡𝑡), which is a best so far 
local sum of MOSs for the UEs connected to UAV 𝑘𝑘 up to round 𝑡𝑡 [25], and it is given by  
 

𝐿𝐿𝑘𝑘(𝑡𝑡) = max�𝐿𝐿𝑘𝑘(𝑡𝑡 − 1), � 𝑀𝑀𝑀𝑀𝑆𝑆(𝑘𝑘,𝑛𝑛)(𝑡𝑡)
𝑛𝑛∈𝒩𝒩𝑘𝑘

� , (9) 

 
where 𝒩𝒩𝑘𝑘  is the set of UEs connected to the UAV 𝑘𝑘 , 𝑀𝑀𝑀𝑀𝑆𝑆(𝑘𝑘,𝑛𝑛)(𝑡𝑡) is the MOS of UE 𝑛𝑛 
connected to UAV 𝑘𝑘 in round 𝑡𝑡. To converge the position of UAV 𝑘𝑘 to the optimal position 
where the local MOS is maximized, the UAV 𝑘𝑘 should save the coordinate of the optimal 
position. The universal gravitational force of local MOS from the saved position is as follows: 
 

𝐹𝐹LM�������⃗ = 𝐾𝐾LM ×
1

𝑑𝑑LM
2

�������������������������⃗
 , (10) 
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where 𝐾𝐾LM is the local MOS factor whose value is listed in Table 1, 𝑑𝑑LM is the distance 
between a UAV and the saved position, and 𝐹𝐹LM�������⃗  is an attractive force into the saved position. 
The global MOS is denoted as 𝐺𝐺(𝑡𝑡), which is a best so far sum of MOSs of all the UEs 
connected with any UAV in round 𝑡𝑡, and it is given by 

 
(a) Unequal UE deployment in hotspot 

 
(b) UE deployment divided into two hotspots 

 
(c) Multiple UE deployment in hotspot 

Fig. 1. Exemplary UE deployments in a hotspot. 
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𝐺𝐺(𝑡𝑡) = max�𝐺𝐺(𝑡𝑡 − 1), � � 𝑀𝑀𝑀𝑀𝑆𝑆(𝑘𝑘,𝑛𝑛)(𝑡𝑡)
𝑛𝑛∈𝒩𝒩𝑘𝑘𝑘𝑘∈𝒦𝒦

� . (11) 

 
Then, each UAV stores the coordinate of the multi-UAVs that maximize the global MOS. The 
universal gravitational force of global MOS from the saved positions is as follows: 
 

𝐹𝐹GM�������⃗ = 𝐾𝐾GM ×
1

𝑑𝑑GM
2

�������������������������⃗
 , (12) 

 
where 𝐾𝐾GM is the global MOS factor whose value is shown in Table 1, and 𝑑𝑑GM is the distance 
between a UAV and the coordinate stored in the UAV. An exploration algorithm of the multi-
UAVs deployment uses a random search virtual force to avoid falling into a local optimal point. 
The random search virtual force is shown as follows: 
 

𝐹𝐹R����⃗ = 𝑘𝑘r × 𝑅𝑅𝑘𝑘���������������⃗  , (13) 
 
where 𝑘𝑘r is a random search force factor whose value is shown in Table 1, and 𝑅𝑅𝑘𝑘 is a two-
dimensional random vector with a unit size for UAV 𝑘𝑘. To adjust the ratio between exploration 
and optimization, the magnitude of the random search virtual force can be changed. By 
summing up all the virtual forces of inter-UAVs (attraction plus repulsion), local MOS, global 
MOS, and random search, the total force 𝐹𝐹𝑘𝑘����⃗  is applied to UAV 𝑘𝑘 as follows: 
 

𝐹𝐹𝑘𝑘����⃗ = 𝛼𝛼(𝑡𝑡) ⋅ �𝐹𝐹𝑘𝑘1,𝑘𝑘2
�����������⃗ + 𝑓𝑓𝑎𝑎���⃗ �+ 𝛽𝛽(𝑡𝑡) ⋅ 𝐹𝐹LM�������⃗ + 𝛾𝛾(𝑡𝑡) ⋅ 𝐹𝐹GM�������⃗ + 𝜁𝜁(𝑡𝑡) ⋅ 𝐹𝐹R����⃗  , (14) 

 
where 𝛼𝛼(𝑡𝑡), 𝛽𝛽(𝑡𝑡), 𝛾𝛾(𝑡𝑡), and 𝜁𝜁(𝑡𝑡) are adjustment parameters for the virtual forces of inter-
UAVs, local MOS, global MOS, and random search, respectively. The formulas for these 
adjustment parameters are as follows: 
 

α(𝑡𝑡) = exp�−𝑝𝑝 ⋅ (𝑡𝑡 − 𝜏𝜏1)�  , 𝑡𝑡 > 𝜏𝜏1 , (15) 
 

𝛽𝛽(𝑡𝑡) = exp�−𝑝𝑝 ⋅ (𝑡𝑡 − 𝜏𝜏2)�  , 𝑡𝑡 > 𝜏𝜏2 , (16) 
 

𝛾𝛾(𝑡𝑡) = 1 − exp�−𝑝𝑝 ⋅ (𝑡𝑡 − 𝜏𝜏3)� , 𝑡𝑡 > 𝜏𝜏3 , (17) 
 

𝜁𝜁(𝑡𝑡) = exp�−𝑝𝑝 ⋅ (𝑡𝑡 − 𝜏𝜏4)� , 𝑡𝑡 > 𝜏𝜏4 , (18) 
 
where 𝑝𝑝 is an exponent for the diminishing virtual forces as the round goes, i.e., the virtual 
forces for inter-UAVs, local MOS, and random search. If 𝑝𝑝  is high, these virtual forces 
diminish more quickly, while the virtual force for global MOS increases sharply as the round 
goes. 𝜏𝜏1, 𝜏𝜏2, 𝜏𝜏4 are the time epochs when these three virtual forces (inter-UAVs, local MOS, 
and the random search) start to diminish, and 𝜏𝜏3 is the time epoch when the global MOS virtual 
force start to increase. Because 𝐹𝐹𝑘𝑘����⃗  can be increased from 0 to +∞, mapping to a finite value is 
required. Let 𝐹𝐹𝑘𝑘����⃗  map to a value between 0 and 𝑉𝑉𝑘𝑘, where 𝑉𝑉𝑘𝑘 is a maximum velocity of UAV 
𝑘𝑘, and this mapping is implemented using arctan() as follows: 
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𝑣𝑣𝑘𝑘 = arctan�𝐹𝐹𝑘𝑘����⃗ � ⋅
2
𝜋𝜋
⋅ 𝑉𝑉𝑘𝑘. (19) 

 
Hence, at each round, the UAV 𝑘𝑘 moves at a speed of 𝑣𝑣𝑘𝑘 to the direction of 𝐹𝐹𝑘𝑘����⃗ . The following 
is the process of D-VF algorithm for the multi-UAVs deployment, and this process is 
summarized in Algorithm 1.  
 
1. Multi-UAVs are randomly placed in a region of interest. 

2. At every round, the attractive virtual force and the repulsive virtual force are re-calculated 
with the current multi-UAVs position.  

3. For each UAV, the local MOS of UEs with the current UAV position is calculated. And 
it updates the local MOS information if the current local MOS is higher than the stored 
local MOS. 

4. Update the global MOS of overall UEs if the current round global MOS is higher than the 
stored global MOS. When 𝑡𝑡 > 𝜏𝜏1,⋯ , 𝑡𝑡 > 𝜏𝜏4 , the associated virtual forces start to be 
adjusted.  

5. For each UAV, all the virtual forces are calculated aggregated, and the aggregated total 
virtual force is applied to the UAV. 

6. Advance to the next round by going to step 2. 

Algorithm 1. D-VF multi-UAVs deployment algorithm 

Input: 

   𝒦𝒦, 𝒩𝒩, 𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜, 𝐾𝐾𝑘𝑘1,𝑘𝑘2
 , 𝐾𝐾r,𝑅𝑅𝑘𝑘1 ,𝐾𝐾LM , 𝐾𝐾GM, 𝑘𝑘r, 𝜏𝜏1, 𝜏𝜏2, 𝜏𝜏3, 𝜏𝜏4, 𝑇𝑇, 𝒦𝒦0

𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑉𝑉𝑘𝑘1 , 𝑅𝑅𝑐𝑐 

Output:  

   𝒦𝒦𝑇𝑇
𝑝𝑝𝑝𝑝𝑝𝑝  for UAV 𝑖𝑖, MOS𝑗𝑗 , Throughput for 1 ≤ 𝑖𝑖 ≤ |𝒦𝒦|, 1 ≤ 𝑗𝑗 ≤ |𝒩𝒩|  

 1:  for each 𝑡𝑡 <  𝑇𝑇 

 2:     for each 𝑘𝑘1 ∈  𝒦𝒦 

 3:        for each 𝑘𝑘2 ∈  𝒦𝒦, 𝑘𝑘2 ≠ 𝑘𝑘1 

 4:           if 𝑑𝑑𝑘𝑘1𝑘𝑘2 < 𝑅𝑅𝑐𝑐 

 5:              𝐹𝐹𝑘𝑘1,𝑘𝑘2
����������⃗ = 𝐾𝐾𝑘𝑘1,𝑘𝑘2

 × 1

�𝑑𝑑𝑘𝑘1,𝑘𝑘2�
2

���������������������������������⃗  

 6:           end if 

 7:           if 𝑑𝑑𝑘𝑘1𝑘𝑘2 < 𝑅𝑅opt 
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 8:              𝑓𝑓a���⃗ = 𝐾𝐾r × �𝑅𝑅opt − 𝑑𝑑𝑘𝑘1,𝑘𝑘2�⃗ 

 9:           end if 

10:       end for 

11:       for each 𝑛𝑛 ∈ 𝒩𝒩 

12:          𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘1,𝑛𝑛)(𝑡𝑡) =  −𝐾𝐾1 ln �𝑑𝑑�𝑟𝑟𝑘𝑘1�� + 𝐾𝐾2      eqn. (8)  

13:       end for 

14:       𝐿𝐿𝑘𝑘1(𝑡𝑡) = max �𝐿𝐿𝑘𝑘1(𝑡𝑡 − 1),∑ 𝑀𝑀𝑀𝑀𝑆𝑆(𝑘𝑘1,𝑛𝑛)(𝑡𝑡)𝑛𝑛∈𝒩𝒩𝑘𝑘1
�     eqn. (9)  

15:       if 𝐿𝐿𝑘𝑘1(𝑡𝑡) ≥ 𝐿𝐿𝑘𝑘1(𝑡𝑡 − 1) 

16:          position update 𝑑𝑑𝐿𝐿𝐿𝐿 

17:       end if 

18:    end for 

19:    𝐺𝐺(𝑡𝑡) = max �𝐺𝐺(𝑡𝑡 − 1),∑ ∑ 𝑀𝑀𝑀𝑀𝑆𝑆(𝑘𝑘1,𝑛𝑛)(𝑡𝑡)𝑛𝑛∈𝒩𝒩𝑘𝑘1𝑘𝑘1∈𝒦𝒦 �     eqn. (11)  

20:    if 𝐺𝐺(𝑡𝑡) ≥ 𝐺𝐺(𝑡𝑡 − 1) 

21:       position update 𝑑𝑑𝐺𝐺𝐺𝐺 

22:    end if 

23:    𝐹𝐹LM�������⃗ = 𝐾𝐾LM × 1
𝑑𝑑LM2

�����������������������⃗  ,𝐹𝐹GM�������⃗ = 𝐾𝐾GM × 1
𝑑𝑑GM2

�����������������������⃗ ,𝐹𝐹R����⃗ = 𝑘𝑘r × 𝑅𝑅𝑘𝑘1�����������������⃗   eqns. (10), (12), and (13)  

24:    for each 𝑘𝑘2 ∈  𝒦𝒦, 𝑘𝑘1 ≠ 𝑘𝑘2 

25:       𝐹𝐹𝑘𝑘1������⃗ = 𝛼𝛼(𝑡𝑡) ⋅ �𝐹𝐹𝑘𝑘1,𝑘𝑘2
����������⃗ + 𝑓𝑓𝑎𝑎���⃗ � + 𝛽𝛽(𝑡𝑡) ⋅ 𝐹𝐹LM�������⃗ + 𝛾𝛾(𝑡𝑡) ⋅ 𝐹𝐹GM�������⃗ + 𝜁𝜁(𝑡𝑡) ⋅ 𝐹𝐹R����⃗   eqn. (14) 

26:    end for 

27:    𝑣𝑣𝑘𝑘1 = arctan�𝐹𝐹𝑘𝑘1������⃗ � ⋅ 2
𝜋𝜋
⋅ 𝑉𝑉𝑘𝑘1 

28: end for 

 
In Algorithm 1, 𝒦𝒦𝑡𝑡

𝑝𝑝𝑝𝑝𝑝𝑝, 𝑡𝑡 = 0,⋯ ,𝑇𝑇 is the multi-UAVs’ position in round 𝑡𝑡, and 𝒦𝒦𝑇𝑇
𝑝𝑝𝑝𝑝𝑝𝑝  is the 

optimal position.  In line 11-13 of Algorithm 1, the MOS of UEs is calculated considering the 
set of UEs 𝒩𝒩 and the set of UAVs 𝒦𝒦 over all the rounds. Therefore, the complexity of D-VF 
algorithm is 𝑂𝑂(|𝒦𝒦||𝒩𝒩|𝑇𝑇), and | ⋅ | is a cardinality of a set. The D-VF algorithm searches for 
densely populated areas and optimizes the deployment of the multi-UAVs quickly. 
Consequently, the QoE of the UEs is enhanced, resulting in the improved communication 
quality. 
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4. Simulation Results 

4.1. Simulation setup 
A multi-UAV simulator built with Java is used to compare the performances of D-VF with 
conventional virtual force (VF) algorithm [26]. The performance metrics for the simulation 
are the number of links between the multi-UAVs and the UEs, average-MOS of all the UEs, 
and moving fairness [16]. The size of an area of interest is 2000 m × 2000 m. The simulation 
parameters are shown in Table 1.  
 

Table 1. Simulation parameters 
Parameters Value 

UAV altitude, ℎuav 100 m 
communication range of UAV, 𝑅𝑅𝑐𝑐 400 m 
number of covered UEs in UAV 20 

attraction force factor, 𝐾𝐾𝑘𝑘1,𝑘𝑘2
  5500 

repulsive force factor, 𝐾𝐾r 3500 
local MOS force factor, 𝐾𝐾LM 500 

global MOS force factor, 𝐾𝐾GM 700 
random force factor, 𝑘𝑘r 10 

LoS, 𝜂𝜂LoS  1 dB 
NLoS, 𝜂𝜂NLoS 20 dB 

SINR threshold -7 dB 
random walk speed 1 m/s 

maximum speed of UAV, 𝑉𝑉𝑘𝑘   10 m/s 
range of hotspot 300 m 

 
In this simulation, 𝐿𝐿N is denoted as the number of connected links between the multi-UAVs 
and the UEs. 

 
 

4.2 Performance analysis with static hotspots 
As shown in Fig. 2, the UEs (red point) are placed around the hotspots (blue point) and the 
multi-UAVs (black circle) are placed across the area. The UEs are located within the range of 
the hotspot (yellow circle). For the purpose of validating the performance of D-VF under 
various UE distributions, the simulation is conducted over six different randomly generated 
distributions shown in Fig. 2.  
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Fig. 2. Multi-UAVs and static UEs deployments around hotspots with six distributions. 
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In Fig. 3, 𝐿𝐿Ns with VF and D-VF with six distributions are depicted. On average after 200 
rounds, 𝐿𝐿N with D-VF becomes stable. However, VF has fluctuations over long period. Note 
that since VF considers only attractive and repulsive factors for the virtual forces, it may suffer 
from oscillation even when the position of the multi-UAVS is close to the balancing point 
between the attractive force and the repulsive force. To the contrary, D-VF reduces the 
attractive virtual force and the repulsive virtual force at later rounds, and the global MOS 
virtual force quickly stabilize the position of the multi-UAVs by moving the multi-UAVs to 
the best so far highest MOS position. The multi-UAVs with VF have connections of 278, 272, 
 

  

  

  
Fig. 3. The number of connected links by VF and D-VF with six distributions. 
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314, 292, 305, 307 from subplot (1st row, 1st column) to (3rd row, 2nd column), whereas the 
multi-UAVs in D-VF have connections of 315, 317, 340, 309, 336, 326. Hence, D-VF has on 
average 29 more connections and lower fluctuations in 𝐿𝐿N than VF. 
In Fig. 4, the average-MOSs for VF, D-VF, and theoretical maximum MOS are depicted. To 
measure the theoretical maximum MOS, a single UAV and 20 UEs are deployed at a common 
horizontal position, and the measured value is 3.39. Note that, a UAV can serve the maximum 
20 UEs in this simulation setting. Similar to Fig. 3, VF has more fluctuations compared to D-
VF. Moreover, for VF the improvement of the average-MOS is marginal as the round goes on. 
To the contrary, the average-MOS of D-VF gradually increases roughly util 200 rounds or 

  

  

  
Fig. 4. Average-MOS of VF and D-VF with six distributions. 
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more. The average-MOS of VF converges to 2.13, 1.9, 2.38, 2.22, 2.24, 2.35 in each 
distribution, while the average-MOS of D-VF converges to 2.47, 2.47, 2.64, 2.3, 2.57, 2.53. 
The results show that D-VF has on average 13% higher average-MOS than VF. As we can see 
in Fig. 3 - Fig. 4, for the static UE scenarios, D-VF outperforms VF in terms of QoE and 
connectivity with UEs. 

4.3 Performance analysis with varying numbers of multi-UAVs 
With the first UEs distribution shown in Fig. 2, 𝐿𝐿𝑁𝑁, average-MOS, and moving fairness of D-
VF are compared with those of VF when the number of the multi-UAVs increases. 
In Fig. 5, 𝐿𝐿N with the increasing number of the multi-UAVs is shown, and as shown in this 
figure, the multi-UAVs deployed with D-VF are connected to more UEs than the multi-UAVs 
deployed with VF. It means that regardless of the number of the multi-UAVs, D-VF more 
effectively covers the service area and successfully establish connections with UEs. 
Specifically, 𝐿𝐿N with D-VF exceeds 𝐿𝐿N with VF by 19.2%, 17%, 13.3%, 10.2%, and 16.8% 
when the number of the multi-UAVs ranges from 14 to 22 with a step size two. 
 

 
Fig. 5. Number of connected links with increasing number of multi-UAVs. 

 
In Fig. 6, the average-MOSs for D-VF, VF, and theoretical maximum are depicted when the 
number of the multi-UAVs increases from 14 to 22. When the number of the multi-UAVs is 
14. The gap between VF and D-VF is small; however, the gap increases as the number of the 
multi-UAVs further increases. When the number of the multi-UAVs is small, both D-VF and 
VF have a difficulty in finding a better deployment because the connections among the multi-
UAVs should be maintained. Accordingly, it is quite natural that the gap between VF and D-
VF is small in this case. However, as the number of the multi-UAVs increases, the multi-UAV 
can build various formations. Hence, D-VF can actively search the optimal multi-UAVs 
position. D-VF has 3.1%, 16.01%, 16.98%, 14.03%, and 20.08% higher average-MOS than 
VF. As a result, the multi-UAVs with D-VF maintain more links and have a higher QoE than 
the multi-UAVs with VF. As we can see in Fig. 5 - Fig. 6, D-VF outperforms VF in terms of 
link establishment and QoE enhancement when the number of UAVs is increased. 
During the multi-UAVs deployment phase, it is desirable that the total moving distance of 
each UAV being similar with each other, which is referred to as moving fairness. Then, Jains’ 
fairness index is used in [11] formulating this moving fairness as follows: 
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Fig. 6. Average-MOS with increasing number of multi-UAVs. 

 

𝜓𝜓m =
�∑ 𝐷𝐷m𝑘𝑘

|𝒦𝒦|
𝑘𝑘=1 �

2

|𝒦𝒦| ⋅ ∑ �𝐷𝐷m𝑘𝑘 �
2|𝒦𝒦|

𝑘𝑘=1

 , (20) 

 
where 𝐷𝐷m𝑘𝑘  is the moving distance of UAV 𝑘𝑘, and |𝒦𝒦| is the total number of the multi-UAVs. 
The comparison of the moving fairness between VF and D-VF is shown in Fig. 7. In this figure, 
the multi-UAVs in D-VF have the less disparity of moving distances than the multi-UAVs in 
VF. In the case of VF, the moving fairness largely decreases as the number of the multi-UAVs 
increases. It means that VF cannot properly utilize the extra UAVs when the number of the 
multi-UAVs increases. Accordingly, there may be a hazardous situation that some UAVs are 
over-utilized while the remaining UAVs are under-utilized in the deployment process. Because 
of those over-utilized UAVs, an operation of the multi-UAVs can be terminated earlier than 
expected. In contrast, in the case of D-VF, even when the number of the multi-UAVs increases, 
the moving fairness remains nearly constant. It means that D-VF utilizes the multi-UAVs more 
evenly than VF. Therefore, D-VF has an advantage in extending the lifetime of the considered  
UAV network. 
 

 
Fig. 7. Moving fairness of VF and D-VF. 
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Fig. 8 shows the MOS distribution with the static UEs distribution given in Fig. 2. When the 
MOS of a spot is high, the color of that spot is close to dark red, and if it is low, the color of 
that spot is close to dark blue. The assumed center point of a hotspot is marked as a green 
triangle, and the UEs are marked as white points. When the center of the hotspot and a densely 
populated area of the UEs do not coincide, the position of multi-UAVs need to be adjusted 
toward the populated area of the UEs. 

 

 
Fig. 8. MOS distribution with UEs in Fig. 2. 

4.4 Performance analysis with moving UEs 
In VF, each UAV moves to the assumed center of the closest hotspot and covers the UEs 
associated with the hotspot. If the hotspot moves, the UEs will move along with the hotspot. 
Accordingly, when the hotspot and the UEs move, there is a gap between the actual center of 
the UEs and the assumed center of the hotspot. D-VF is based on the measured MOS of UEs 
and presents a good solution for this kind of moving UEs scenarios.  
In Fig. 9 - Fig. 10, the simulation results show 𝐿𝐿𝑁𝑁  and average-MOS with moving UEs 
scenarios. In these figures, both the hotspots and the associated UEs move in a random walk 
fashion while the UEs’ random walk is regulated not to cross the range of the hotspots. The 
hotspots and the UEs move at the speed of 1 m/round. In these figures, both 𝐿𝐿𝑁𝑁  and the 
average-MOS increase sharply at early rounds whether the adopted algorithm is VF or D-VF. 
It means that, compared to the static scenarios, the attractive and the repulsive virtual forces 
play an important role at early rounds. Because the UEs moves continuously, it takes longer 
rounds in stabilizing the deployment based on the attractive and the repulsive virtual forces. 
However, D-VF extracts more gain in both 𝐿𝐿𝑁𝑁 and average-MOS by further optimizing the 
multi-UAVs position. In Fig. 9, the average 𝐿𝐿𝑁𝑁 s for VF and D-VF are 277 and 295, 
respectively. D-VF has more connections with UEs than VF. Fig. 10 shows the average-MOS 
with moving hotspots and moving UEs. The average-MOS of VF is 2.16, whereas the average-
MOS of D-VF is 2.39. As the multi-UAVs with D-VF approach the center of the UEs, the 
average-MOS increases. D-VF follows the actual center of the UEs more closely than VF. As 
we can see in Fig. 9 - Fig. 10, D-VF has better performances than VF in terms of link 
establishment and QoE enhancement when the hotspot and the UEs move randomly. 
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Fig. 9. Number of links for VF and D-VF. 

 
Fig. 10. Average-MOS for VF and D-VF. 

 
 
In Fig. 11 - Fig. 12, the hotspots move to the right and the associated UEs move randomly 
around the moving hotspots. Fig. 11 shows 𝐿𝐿𝑁𝑁 between the multi-UAVs and the UEs. Fig. 11 
- Fig. 12 are largely similar with Fig. 9 - Fig. 10, because the UEs moves continuously. Hence, 
the attractive and the repulsive virtual forces play an important role at early rounds. Compared 
to the static case, even D-VF has fluctuations because the distribution of the UEs keeps 
changing. The average 𝐿𝐿𝑁𝑁s of VF and D-VF are 260 and 280, respectively. Fig. 12 shows the 
average-MOS for this moving UEs scenario. The average-MOSs of VF and D-VF are 1.9 and 
2.09, respectively. Compared to VF, D-VF establishes more connections between the multi-
UAVs and the UEs and obtains high average-MOS for the UEs. 
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Fig. 11. Number of links for VF and D-VF. 

 

 
Fig. 12. Average-MOS of VF and D-VF. 

 
In Fig. 13 - Fig. 14, eighteen UAVs and all the associated UEs are location at a single point. 
Then, as the round goes, the UEs move to predetermined positions forming seven hotspots. 
Once the locations of the hotspots are fixed, the UEs move randomly around the hotspot. Fig. 
13 shows 𝐿𝐿𝑁𝑁 between the multi-UAVs and the UEs. Compared to the previous two mobile 
scenarios, it has more fluctuation at its early rounds. Note that, in this scenario, many UEs 
come together at early rounds. Accordingly, a small displacement of the multi-UAVs causes 
the large change of UEs connection, and it results in more fluctuations at early rounds. 
Moreover, this mobile UEs scenario shows the largest performance gap between VF and D-
VF. In this case, compared to the previous two mobile scenarios, the distances among the 
hotspots largely change. Accordingly, the result suggests that D-VF more actively adapt to the 
change of the distances among the hotspots. The average 𝐿𝐿𝑁𝑁s of VF and D-VF are 180 and 
249, respectively. Fig.14 shows the average-MOS for this moving UEs scenario. The average-
MOSs for VF and D-VF are 2.12 and 2.85, respectively. Compared to VF, D-VF establishes 
more connections between the multi-UAVs and the UEs and obtains high average-MOS for 
the UEs. 
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Fig. 13. Number of links for VF and D-VF. 

 

 
Fig. 14. Average-MOS of VF and D-VF. 

 

5. Conclusion 
It is known that VF shows good performance in establishing the links between multi-UAVs 
and UEs. However, when the UEs in a network are unequally distributed, QoE is significantly 
degraded. We presented D-VF algorithm which adopts MOS to improve QoE. D-VF combines 
VF with MOS based virtual forces to improve the QoE of the UEs while keeping the links 
among the multi-UAVs being connected. When the UEs are stationary, the multi-UAVs move 
to densely populated areas of the UEs to increase the connectivity and the QoE of the UEs. 
Also, even if the UEs move, the multi-UAVs can maintain connections to the moving UEs. 
The simulation results show the increased connectivity with UEs, resulting in the increased 
average-MOS. The increase of average-MOS also indicates an improvement of QoE. Even 
when the UEs move randomly around hotspot areas, D-VF achieves higher QoE and 
connectivity of the UEs than VF. The limitations of D-VF can be considered in two aspects. 
The first one is that the convergence time of D-VF is affected by the initial distribution of the 
multi-UAVs because the virtual forces among the UAVs are dependent on the initial 
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distribution of the multi-UAVs. The second one is that D-VF needs to be updated frequently 
when the UEs move fast. Accordingly, the accuracy of D-VF can be reduced when D-VF 
update interval is shorter than the D-VF’s convergence time. Therefore, a robust multi-UAVs 
deployment under fast moving UEs environment will be an interesting future research topic. 
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