DOI QR코드

DOI QR Code

A Review on Ceramic Based Membranes for Textile Wastewater Treatment

염색폐수의 처리를 위한 세라믹 분리막에 대한 고찰

  • Kwak, Yeonsoo (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Rajkumar, Patel (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
  • 곽연수 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공)
  • Received : 2022.04.20
  • Accepted : 2022.04.25
  • Published : 2022.04.30

Abstract

Among various industries, the textile industry uses the largest amount of water for coloring textiles which leads to a large amount of wastewater containing various kinds of dye. There are various methods for the removal of dye such as flocculation, ozone treatment, adsorption, etc. But these processes are not much successful due to the issue of recycling which enhances the cost. Alternatively, the membrane separation process for the treatment of dye in wastewater is already documented as the best available technique. Polymeric membrane and ceramic membrane are two separate groups of separation membranes. Advantages of ceramic membranes include the ease of cleaning, long lifetime, good chemical and thermal resistance, and mechanical stability. Ceramic membranes can be prepared from various sources and natural materials like clay, zeolite, and fly ash are very cheap and easily available. In this review separation of wastewater is classified into mainly three groups: ultrafiltration (UF), microfiltration (MF), and nanofiltration (NF) process.

다양한 산업 중에서 섬유 산업은 섬유 염색을 위해 가장 많은 양의 물을 사용하는데, 이는 여러 종류의 염료를 포함한 폐수의 방대한 배출로 이어진다. 염료의 제거를 위한 방법에는 오존 처리, 흡착 등의 다양한 처리 방법이 존재한다. 하지만 이러한 처리 방법은 폐수 재사용의 문제로 인해 처리 가격이 상승하기 때문에 성공적이지 못하다. 이에 대한 대안으로 막분리 공정이 폐수의 염료 처리를 위한 가장 적절한 기술로 보고되고 있다. 이때 사용되는 분리막은 고분자 분리막과 세라믹 분리막으로 나눌 수 있다. 세라믹 분리막의 장점에는 세척의 용이함, 긴 수명, 내열성, 내화학성, 그리고 기계적 안정성이 있다. 세라믹 분리막은 다양한 원료로 만들 수 있으며, 점토, 제올라이트, 플라이 애시와 같은 천연 재료는 저렴하고 구하기 용이하다. 본 리뷰에서 폐수처리는 크게 한외여과(ultrafiltration), 정밀여과(microfiltration), 그리고 나노여과(nanofiltration) 세가지 공정으로 나누어져 있다.

Keywords

References

  1. S. Barredo-Damas, M. I. Alcaina-Miranda, A. Bes-Pia, M. I. Iborra-Clar, A. Iborra-Clar, and J. A. Mendoza-Roca, "Ceramic membrane behavior in textile wastewater ultrafiltration", Desalination, 250, 623 (2010). https://doi.org/10.1016/j.desal.2009.09.037
  2. M. C. Shin, Y. C. Choi, and J. H. Park, "Development of Ceramic Membrane for Metal Ion Separation of Lignin Extract from Pulp Process", Membr. J., 27, 199 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.199
  3. S. Barredo-Damas, M. I. Alcaina-Miranda, M. I. Iborra-Clar, J. A. Mendoza-Roca, and M. Gemma, "Effect of ph and MWCO on textile effluents ultrafiltration by tubular ceramic membranes", Desalin. Water Treat., 27, 81 (2011). https://doi.org/10.5004/dwt.2011.2057
  4. A. Majouli, S. Tahiri, S. Alami Younssi, H. Loukili, and A. Albizane, "Elaboration of new tubular ceramic membrane from local Moroccan Perlite for microfiltration process. Application to treatment of industrial wastewaters", Ceram. Int., 38, 4295 (2012). https://doi.org/10.1016/j.ceramint.2012.02.010
  5. E. Park, H. Jang, N. Choi, S. Lee, and J. Kim, "Feasibility of Pyrophyllite Ceramic Membrane for Wastewater Treatment and Membrane Fouling", Membr. J., 26, 205 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.3.205
  6. M. Zebic Avdicevic, K. Kosutic, and S. Dobrovic, "Flux decline study of tubular ceramic and flat sheet UF membranes in textile wastewater treatment", Chem. Biochem. Eng. Q., 33, 405 (2019). https://doi.org/10.15255/cabeq.2018.1570
  7. E. Erdogmus, M. Harja, O. Gencel, M. Sutcu, and A. Yaras, "New construction materials synthesized from water treatment sludge and fired clay brick wastes", J. Build. Eng., 42, 102471 (2021). https://doi.org/10.1016/j.jobe.2021.102471
  8. A. Manni, B. Achiou, A. Karim, A. Harrati, C. Sadik, M. Ouammou, S. Alami Younssi, and A. El Bouari, "New low-cost ceramic microfiltration membrane made from natural magnesite for industrial wastewater treatment", J. Environ. Chem. Eng., 8, 103906 (2020). https://doi.org/10.1016/j.jece.2020.103906
  9. G. Zeng, Y. He, Z. Ye, X. Yang, X. Chen, J. Ma, and F. Li, "Novel Halloysite Nanotubes Intercalated Graphene Oxide Based Composite Membranes for Multifunctional Applications: Oil/Water Separation and Dyes Removal", Ind. Eng. Chem., 56, 10472 (2017). https://doi.org/10.1021/acs.iecr.7b02723
  10. E. Zuriaga-Agusti, E. Alventosa-deLara, S. Barredo-Damas, M. I. Alcaina-Miranda, M. I. Iborra-Clar, and J. A. Mendoza-Roca, "Performance of ceramic ultrafiltration membranes and fouling behavior of a dye-polysaccharide binary system", Water Res., 54, 199 (2014). https://doi.org/10.1016/j.watres.2014.01.064
  11. I. Jedidi, S. Khemakhem, S. Saidi, A. Larbot, N. Elloumi-Ammar, A. Fourati, A. Charfi, A. B. Salah, and R. B. Amar, "Preparation of a new ceramic microfiltration membrane from mineral coal fly ash: Application to the treatment of the textile dying effluents", Powder Technol., 208, 427 (2011). https://doi.org/10.1016/j.powtec.2010.08.039
  12. K. R. Lee, "Sorption characteristics of butanol/water and isopropanol/water solutions on the FASs coated inorganic membrane", Membr. J., 28, 320 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.5.320
  13. E. Alventosa-Delara, S. Barredo-Damas, E. Zuriaga-Agusti, M. I. Alcaina-Miranda, and M. I. Iborra-Clar, "Ultrafiltration ceramic membrane performance during the treatment of model solutions containing dye and salt", Sep. Purif. Technol., 129, 96 (2014). https://doi.org/10.1016/j.seppur.2014.04.001
  14. M. Agtas, M. Dilaver, and I. Koyuncu, "Halloysite nanoclay doped ceramic membrane fabrication and evaluation of textile wastewater treatment performance", Process Saf. Environ. Prot., 154, 72 (2021). https://doi.org/10.1016/j.psep.2021.08.010
  15. S. K. Hubadillah, M. H. D. Othman, Z. S. Tai, M. R. Jamalludin, N. K. Yusuf, A. Ahmad, M. A. Rahman, J. Jaafar, S. H. S. A. Kadir, and Z. Harun, "Novel hydroxyapatite-based bio-ceramic hollow fiber membrane derived from waste cow bone for textile wastewater treatment", Chem. Eng. J., 379, 122396 (2020). https://doi.org/10.1016/j.cej.2019.122396
  16. Y. Zhao, D. Lu, Y. Cao, S. Luo, Q. Zhao, M. Yang, C. Xu, and J. Ma, "Interaction Analysis between Gravity-Driven Ceramic Membrane and Smaller Organic Matter: Implications for Retention and Fouling Mechanism in Ultralow Pressure-Driven Filtration System", Environ. Sci. Technol., 52, 13718 (2018). https://doi.org/10.1021/acs.est.8b03618
  17. S. Benkhaya, B. Achiou, M. Ouammou, J. Bennazha, S. Alami Younssi, S. M'Rabet, and A. El Harfi, "Preparation of low-cost composite membrane made of polysulfone/polyetherimide ultrafiltration layer and ceramic pozzolan support for dyes removal", Mater. Today Commun., 19, 212 (2019). https://doi.org/10.1016/j.mtcomm.2019.02.002
  18. S. Bousbih, E. Errais, F. Darragi, J. Duplay, M. Trabelsi-Ayadi, M. O. Daramola, and R. Ben Amar, "Treatment of textile wastewater using monolayered ultrafiltation ceramic membrane fabricated from natural kaolin clay", Environ. Technol., 42, 3348 (2021). https://doi.org/10.1080/09593330.2020.1729242
  19. M. Dilaver, S. M. Hocaoglu, G. Soydemir, M. Dursun, B. Keskinler, I. Koyuncu, and M. Agtas, "Hot wastewater recovery by using ceramic membrane ultrafiltration and its reusability in textile industry", J. Clean. Prod., 171, 220 (2018). https://doi.org/10.1016/j.jclepro.2017.10.015
  20. B. Santra, L. Ramrakhiani, S. Kar, S. Ghosh, and S. Majumdar, "Ceramic membrane-based ultrafiltration combined with adsorption by waste derived biochar for textile effluent treatment and management of spent biochar", J. Enviorn. Health Sci. Eng., 18, 973 (2020). https://doi.org/10.1007/s40201-020-00520-w
  21. M. Zebic Avdicevic, K. Kosutic, and S. Dobrovic, "Effect of operating conditions on the performances of multichannel ceramic UF membranes for textile mercerization wastewater treatment", Environ. Technol., 38, 65 (2017). https://doi.org/10.1080/09593330.2016.1186225
  22. P. Cui, Y. Chen, and G. Chen, "Degradation of Low Concentration Methyl Orange in Aqueous Solution through Sonophotocatalysis with Simultaneous Recovery of Photocatalyst by Ceramic Membrane Microfiltration", Ind. Eng. Chem., 50, 3947 (2011). https://doi.org/10.1021/ie100832q
  23. R. Mouratib, B. Achiou, M. E. Krati, S. A. Younssi, and S. Tahiri, "Low-cost ceramic membrane made from alumina- and silica-rich water treatment sludge and its application to wastewater filtration", J. Eur. Ceram. Soc., 40, 5942 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.07.050
  24. X. Ma, P. Chen, M. Zhou, Z. Zhong, F. Zhang, and W. Xing, "Tight Ultrafiltration Ceramic Membrane for Separation of Dyes and Mixed Salts (both NaCl/Na2SO4) in Textile Wastewater Treatment", Ind. Eng. Chem. Res., 56, 7070 (2017). https://doi.org/10.1021/acs.iecr.7b01440
  25. M. Agtas, O. Yilmaz, M. Dilaver, K. Alp, and I. Koyuncu, "Pilot-scale ceramic ultrafiltration/nano-filtration membrane system application for caustic recovery and reuse in textile sector", Environ. Sci. Pollut. Res., 28, 41029 (2021). https://doi.org/10.1007/s11356-021-13588-0
  26. B. Bethi, S. H. Sonawane, B. A. Bhanvase, and S. S. Sonawane, "Textile Industry Wastewater Treatment by Cavitation Combined with Fenton and Ceramic Nanofiltration Membrane", Chem. Eng. Process.: Process Intensif. 168, 108540 (2021). https://doi.org/10.1016/j.cep.2021.108540