DOI QR코드

DOI QR Code

A Transient Separation Behavior of PDMS/PSF Hollow Fiber Membrane Modules for Ethanol-Water Mixtures

PDMS/PSF 중공사 분리막의 시간 의존적 에탄올-물 분리 거동 연구

  • Muhammad Junaid, Ammar (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Arepalli, Devipriyanka (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Kim, Min-Zy (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Ha, Seong Yong (Airrane Co. Ltd.) ;
  • Cho, Churl Hee (Graduate School of Energy Science and Technology, Chungnam National University)
  • Received : 2022.04.22
  • Accepted : 2022.04.27
  • Published : 2022.04.30

Abstract

Many studies on pervaporation (PV) for the separation of dilute alcohols as an alternative to conventional energy-intensive technique of distillation have been conducted earlier. The pervaporation transition behavior of ethanol-water mixtures through the PDMS/PSF membrane is important, in order to understand the mechanism of diffusion process. Therefore, in the present work, transient PV behavior for 50 wt% EtOH/H2O mixture at 50℃ was investigated by using 1194 cm2 PDMS/PSF hollow fiber membrane modules. The overall total flux and the separation factor of all the membrane modules increased initially and then gradually decreased with respect to PV time. The initial increase can be attributed to fact that membrane fibers were dry and it took time to dissolve into the membrane surface, but the subsequent decrease is due to the depletion of ethanol concentration in the feed. Therefore, it was confirmed that the ethanol permeation through a PDMS membrane is governed by the solution-diffusion mechanism.

알코올의 탈수를 위하여 에너지 다소비 공정인 증류 공정을 투과증발 막 공정으로 대체하려는 연구가 많이 진행되어져 왔다. 대표적인 투과증발 막인 PDMS 분리막에 대한 시간의존적 분리 거동은 분리 메카니즘의 이해에 매우 중요하다. 따라서 본 연구에서는 50 wt% 에탄올-물 혼합용액에 대하여 50℃에서 막면적 1194 cm2인 PDMS/PSF 분리막 모듈의 시간의존적인 투과증발 분리 거동을 고찰하였다. 총 유속과 에탄올/물 분리계수는 투과증발 시간이 증가함에 따라서 초기에 증가하다가 다시 감소하였다. 초기 분리성능의 증가는 건조한 PDMS 분리막에 에탄올이 용해되는데 시간이 걸리기 때문이며, 후기 분리성능의 감소는 주입 탱크의 에탄올 농도가 시간에 따라서 감소하기 때문에 나타나는 현상이었다. 따라서 본 연구로부터 PDMS 분리막을 통한 에탄올의 투과는 용해-확산 메카니즘에 의해 발생된다는 것이 재확인되었다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Mid-career Researcher Program, NRF-2020R1A2C1013911).

References

  1. S. Fatima, B. Govardhan, S. Kalyani, and S. Sridhar, Extraction of volatile organic compounds from water and wastewater by vacuum-driven membrane process: A comprehensive review, Chem. Eng. J., 434, 134664 (2022). https://doi.org/10.1016/j.cej.2022.134664
  2. R. Castro-Munoz, F. Galiano, V. Fila, E. Drioli, and A. Figoli, Mixed matrix membranes (MMMs) for ethanol purification through pervaporation: Current state of the art, Rev. Chem. Eng., 35, 565-590 (2019). https://doi.org/10.1515/revce-2017-0115
  3. Z. Jia and G. Wu, Metal-organic frameworks based mixed matrix membranes for pervaporation, Micropor. Mesopor. Mater., 235, 151-159 (2016). https://doi.org/10.1016/j.micromeso.2016.08.008
  4. A. Basile, A. Figoli, and M. Khayet, Pervaporation, vapour permeation and membrane distillation: principles and applications, Elsevier, 2015.
  5. R. Castro-Munoz, F. Galiano, V. Fila, E. Drioli, and A. Figoli, Matrimid® 5218 dense membrane for the separation of azeotropic MeOH-MTBE mixtures by pervaporation, Sep. Purif. Technol., 199, 27-36 (2018). https://doi.org/10.1016/j.seppur.2018.01.045
  6. J. Seon Kim, C. Sub Lee, E. Hye Cho, and J. Won Rhim, PDMS, Pervaporation separation of isopropyl alcohol-water mixtures using polydimethylsiloxane, Membr. J., 23, 245-250 (2013).
  7. J. Hwang, H.-H. Min, Y.-I. Park, J.-S. Chang, Y.-K. Park, C.-H. Cho, and M.-H. Han, Prediction of propylene/propane separation behavior of Na-type faujasite zeolite membrane by using gravimetric adsorption, Membr. J., 28, 432-443 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.6.432
  8. B. Yoon, Y. Kim, D.-H. Lee, and C.-H. Cho, Improvement of pervaporative water flux of mordenite zeolite membrane by controlling membrane thickness, Membr. J., 29, 263-275 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.5.263
  9. F. Falbo, S. Santoro, F. Galiano, S. Simone, M. Davoli, E. Drioli, and A. Figoli, Organic/organic mixture separation by using novel ECTFE polymeric pervaporation membranes, Polymer (Guildf)., 98, 110-117 (2016). https://doi.org/10.1016/j.polymer.2016.06.023
  10. F. Galiano, F. Falbo, and A. Figoli, Polymeric pervaporation membranes: organic-organic separation, Nanostructured Polym. Membr., 2, 287-310 (2016).
  11. B. Girard and L. R. Fukumoto, Membrane processing of fruit juices and beverages: a review, Crit. Rev. Food Sci. Nutr., 40, 91-157 (2000). https://doi.org/10.1080/10408690091189293
  12. W. Kujawski and S. R. Krajewski, Sweeping gas pervaporation with hollow-fiber ion-exchange membranes, Desalination., 162, 129-135 (2004). https://doi.org/10.1016/S0011-9164(04)00036-0
  13. W. Zhang, W. Sun, J. Yang, and Z. Ren, The study on pervaporation behaviors of dilute organic solution through pdms/ptfe composite membrane, Appl. Biochem. Biotechnol., 160, 156 (2009). https://doi.org/10.1007/s12010-009-8582-3
  14. R. W. Baker, Membrane technology and applications, John Wiley & Sons, 2012.
  15. D. M. Warsinger, S. Chakraborty, E. W. Tow, M. H. Plumlee, C. Bellona, S. Loutatidou, L. Karimi, A. M. Mikelonis, A. Achilli, A. Ghassemi, L. P. Padhye, S. A. Snyder, S. Curcio, C. D. Vecitis, H. A. Arafat, and J. H. Lienhard, A review of polymeric membranes and processes for potable water reuse, Prog. Polym. Sci., 81, 209-237 (2018). https://doi.org/10.1016/j.progpolymsci.2018.01.004
  16. G. Jyoti, A. Keshav, and J. Anandkumar, Review on pervaporation: theory, membrane performance, and application to intensification of esterification reaction, J. Eng., 2015, 927068 (2015).
  17. J. G. Wijmans and R. W. Baker, The solution-diffusion model: A review, J. Membr. Sci., 107, 1-21 (1995). https://doi.org/10.1016/0376-7388(95)00102-I
  18. S. J. Lue, J. S. Ou, S.-L. Chen, W.-S. Hung, C.-C. Hu, Y. C. Jean, and J.-Y. Lai, Tailoring permeant sorption and diffusion properties with blended polyurethane/poly(dimethylsiloxane) (PU/PDMS) membranes, J. Membr. Sci., 356, 78-87 (2010). https://doi.org/10.1016/j.memsci.2010.03.033
  19. T. Mohammadi, A. Aroujalian, and A. Bakhshi, Pervaporation of dilute alcoholic mixtures using PDMS membrane, Chem. Eng. Sci., 60, 1875-1880 (2005). https://doi.org/10.1016/j.ces.2004.11.039
  20. L. Li, Z. Xiao, S. Tan, L. Pu, and Z. Zhang, Composite PDMS membrane with high flux for the separation of organics from water by pervaporation, J. Membr. Sci., 243, 177-187 (2004). https://doi.org/10.1016/j.memsci.2004.06.015
  21. J. M. Zielinski and J. L. Duda, Predicting polymer/solvent diffusion coefficients using free-volume theory, AIChE J., 38, 405-415 (1992). https://doi.org/10.1002/aic.690380309
  22. J. S. Vrentas and J. L. Duda, Diffusion of small molecules in amorphous polymers, Macromolecules. 9 785-790 (1976). https://doi.org/10.1021/ma60053a019
  23. H. Nasiri and A. Aroujalian, A novel model based on cluster formation for pervaporation separation of polar components from aqueous solutions, Sep. Purif. Technol., 72, 13-21 (2010). https://doi.org/10.1016/j.seppur.2009.12.020