DOI QR코드

DOI QR Code

질소시비수준에 따른 국내 주요 벼 품종의 수량 및 품질 반응

Response of Yield and Quality in Major Domestic Rice (Oryza sativa L.) Varieties according to the Nitrogen Application Levels

  • 최종서 (농촌진흥청 국립식량과학원 기술지원과) ;
  • 이진석 (농촌진흥청 국립식량과학원 중부작물부 재배환경과) ;
  • 강신구 (농촌진흥청 국립식량과학원 중부작물부 재배환경과) ;
  • 이대우 (농촌진흥청 국립식량과학원 중부작물부 재배환경과) ;
  • 양운호 (농촌진흥청 국립식량과학원 중부작물부 재배환경과) ;
  • 이석기 (농촌진흥청 국립식량과학원 중부작물부 재배환경과) ;
  • 신수현 (농촌진흥청 국립식량과학원 중부작물부 재배환경과) ;
  • 김민태 (농촌진흥청 국립식량과학원 중부작물부 재배환경과)
  • Jong-Seo Choi (Technology service Division, National Institute of Crop Science, Rural Development Administration) ;
  • Jinseok Lee (Crop Cultivation & Environment Research Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Shingu Kang (Crop Cultivation & Environment Research Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Dae-Woo Lee (Crop Cultivation & Environment Research Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Woonho Yang (Crop Cultivation & Environment Research Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Seuk-Ki Lee (Crop Cultivation & Environment Research Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Su-Hyeon Sin (Crop Cultivation & Environment Research Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Min-Tae Kim (Crop Cultivation & Environment Research Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration)
  • 투고 : 2022.11.30
  • 심사 : 2022.12.06
  • 발행 : 2022.12.01

초록

우리나라 주요 재배 벼 품종의 고품질 쌀 생산을 위한 최적 질소 시비량을 제시하기 위하여, 우리나라 주요 벼 21품종을 공시하여 질소 시비량에 따른 수량과 품질변화를 검토한 결과는 다음과 같다. 1. 3년간 평균수량은 표준 질소 시비량 9 kg/10a으로 재배했을 때와 비교하여 질소 시비량 0, 3, 5, 7 kg/10a으로 재배했을 때 각각 28%, 22%, 11%, 8% 감소하였으며, 수량성과 질소 시비량 감소에 따른 수량 감소 경향은 품종별로 차이가 있었다. 2. 주당수수는 질소 시비량이 증가함에 따라 증가하였으나, 수랑립수와 천립중에는 큰 변화가 없었고, 수당립수는 다른 수량구성요소에 비해 상대적으로 연차변이가 적었으며, 질소 시비량에 따른 수량구성요소의 변화는 품종의 유전적 특성에 따라 큰 차이를 나타내었다. 3. 완전미율은 질소 시비량의 증가에 큰 영향을 받지 않고 어느 정도 일정하게 유지되는 경향을 나타내었고, 싸라기 비율은 약간 감소하였으며, 분상질립은 증가하였다. 4. 쌀의 단백질 함량은 2018과 2019년의 경우 질소 시비량이 증가할수록 감소하다가 질소 시비량 7 kg/10a에서 가장 낮았고, 9 kg/10a에서 다시 증가하는 경향을 나타내었으나, 2020년의 경우 질소 시비량이 증가함에 따라 지속적으로 증가하는 경향을 나타내었다. 5. 품종별로 표준 질소 시비량 9 kg/10a에서 시험기간 중 2회 이상 쌀 단백질 함량 6.0%를 초과한 품종은 해담 등 13품종으로 이중 질소 시비량을 7 kg/10a으로 감비하여 재배한 경우, 시험기간 중 2회 이상 쌀 단백질 함량이 6.0%이하로 낮아진 품종은 해담, 진수미, 호품, 호평, 현품, 새누리, 영호진미 등 7품종이었다.

In order to evaluate the effect of nitrogen application levels on yield and quality of rice varieties, a field experiment was conducted at National Institute of Crop Science of Korea from 2018 to 2020. Five levels (0, 3, 5, 7, and 9 kg/10a) of nitrogen fertilizer were treated to 21 Korean rice varieties. Yield, yield component, appearance quality, and protein content in rice were analyzed. The average head rice yield for 3 years decreased by 28%, 22%, 11%, and 8%, respectively, when cultivated with 0, 3, 5, and 7 kg/10a nitrogen application compared to cultivation with a standard nitrogen application amount, 9 kg/10a. The number of panicles per hill increased as the amount of nitrogen application increased, but there was no significant change in the number of grains per panicle and 1000-grains weight, and the number of panicles per hill showed relatively small annual variation compared to other yield components. There was no significant difference in the head rice ratio according to the nitrogen application amount, the broken rice ratio slightly decreased, and the floury rice ratio increased. The protein content of rice decreased with increasing nitrogen application in 2018 and 2019, and was the lowest at 7 kg/10a of nitrogen application, and showed a tendency to increase again at 9 kg/10a. In the case of 2020, as the amount of nitrogen application increased, the protein content showed a tendency to continuously increase. In terms of varieties, 13 varieties, including Chilbo, seemed to be capable of low-nitrogen cultivation because loss of the head rice yield was less and the protein content could be lowered to 6% or less according to 7 kg/10a nitrogen application.

키워드

과제정보

본 논문은 농촌진흥청 연구사업(과제번호: PJ01348701)의 지원에 의해 이루어진 것임

참고문헌

  1. Ahn, S. Y. and D. H. Kim. 1996. Effects of application rates on quality of rice. Institute of Agricultural Resources Research, Dong-A Univ., Korea. 3 : 9-16.
  2. Ali, I., L. Tang, J. Dai, M. Kang, A. Mahmood, W. Wang, B. Liu, L. Liu, W. Cao, and Y. Zhu. 2021. Responses of Grain Yield and Yield Related Parameters to Post-Heading Low-Temperature Stress in Japonica Rice. Plants 10(7) : 1425.
  3. Cha, K. H., Y. S. Kim, and D. K. Lee. 1982. Effects of application levels of fertilizer on the susceptibility to bacterial leaf blight, yield and quality of grains in nineteen rice cultivars in Jeonnam region. Korean J. Plant Prot. 21 : 216-221.
  4. Choi, Y. K. 1996. Characteristics of quality with fidelity distribution and fidelity of rice grain under the different rice cultivars and cultivation environments. Graduate School, Jeonbuk National University. Jeonju, Korea.
  5. Faraji, F., M. Espahani, M. Kavousi, M. Nahvi, And A. Forghani. 2013. Effect of nitrogen fertilizer levels on Fe and protein content, grain breakage and grain yield of rice (Oryza sativa L. cv. Khazar). Biharean Biologist 7(1) : 25-28.
  6. Gewaily, E. E., A. M. Ghoneim, and M. M. A. Osman. 2018. Effects of nitrogen levels on growth, yield and nitrogen use efficiency of some newly released Egyptian rice genotypes. Open Agriculture 3 : 310-318. https://doi.org/10.1515/opag-2018-0034
  7. Jacobs, B. C. and C. J. Pearson. 1999. Growth, Development and Yield of Rice in Response to Cold Temperature. J. Agron. Crop Sci. 182 : 79-88. https://doi.org/10.1046/j.1439-037x.1999.00259.x
  8. Kim, C. E., M. Y. Kang, and M. H. Kim. 2012. Comparison of Properties Affecting the Palatability of 33 Commercial Brands of Rice. Korean J. Crop Sci. 57(3) : 301-309. https://doi.org/10.7740/kjcs.2012.57.3.301
  9. Kim, J.-I., H.-C. Choi, K.-H. Kim, J.-K. Ahn, N.-B. Park, D.-S. Park, C.-S. Kim, J. Y. Lee, and J.-K. Kim. 2009. Varietal Response to Grain Quality and Palatability of Cooked Rice Influenced by Different Nitrogen Applications. Korean J. Crop Sci. 54(1) : 13-23.
  10. Kondo, T., T. Takayama, and H. Osanami. 2009. Nitrogen Fertilizer Application and Technological Progress in Rice Production in Japan [in Japanese]. The Japanese Journal of Rural Economics 2009. 139-143.
  11. Korean Law Information Center. 2022. https://law.go.kr/lsSc.do?menuId=1&subMenuId=15&tabMenuId=81&query=%EC%96%91%EA%B3%A1%EA%B4%80%EB%A6%AC%EB%B2%95#liBgcolor0 (2022. 10. 6).
  12. KOSIS (Korean Statistical Information Service). 2021. https://kosis.kr/statisticsList/statisticsListIndex.do?vwcd=MT_ZTITLE&menuId=M_01_01 (2022. 10. 6).
  13. Lee, C.-K., J. H. Kim, M.-K Choi, K.-S. Kwak, and J.-C. Shin. 2010. Nitrogen Applicaion Method for High Quality and Labor Saving in Rice Production under Amended Standard N Application Level. Korean J. Crop Sci. 55(1) : 70-75.
  14. Lee, J. H. and Y. J. Oh. 1991. Yield and quality of rice by continuous application of NPK and organic matter. Korean J. Crop Sci. 36 : 332-339.
  15. Lee, S., E. Son, S. Hong, S. Oh, J. Y. Lee, J. Park, S. Woo, and C. Lee. 2016. Growth and Yield Under Low Solar Radiation During the Reproductive Growth Stages of Rice Plants. Korean J. Crop Sci. 61(2) : 87-91. https://doi.org/10.7740/kjcs.2016.61.2.087
  16. Leesawatwong, M., S. Jamjod, B. Rerkasem, and S. Pinjai. 2003. Determination of a premium priced, special quality rice. International Rice Research Notes 28(1) : 34.
  17. Liu, W., T. Yin, Y. Zhao, X. Wang, K. Wang, Y. Shen, Y. Ding, and S. Tang. 2021. Effects of High Temperature on Rice Grain Development and Quality Formation Based on Proteomics Comparative Analysis Under Field Warming. Front. Flant Sci. 12.
  18. RDA (Rural Development Administration). 2012. Agricultural Science Technology Standards for Investigation of Research. pp.317-337.
  19. Sharma, N., V. B. Sinha, N. Gupta, S. Rajpal, S. Kuchi, V. Sitaramam, R. Parsad, and N. Raghuram. 2018. Phenotyping for Nitrogen Use Efficiency: Rice Genotypes Differ in NResponsive Germination, Oxygen Consumption, Seed Urease Activities, Root Growth, Crop Duration, and Yield at Low N. Front. Plant Sci. 9.
  20. Song, Y.-S., K.-S. Lee, B.-G. Jung, H.-j. Jun, K.-S. Kwag, B.-Y. Yeon, and Y.-S. Yoon. 2006. Determination of Nitrogen Application Rates with Paddy Soil Types for Production of High Rice Quality. Korean J. Soil Sci. Fert. 39(2) : 86-94.
  21. Zhao, C., G. Liu, Y. Chen, Y. Jiang, Y. Shi, L. Zhao, P. Liao, W. Wang, K. Xu, Q. Dai, and Z. Huo. 2022. Excessive Nitrogen Application Leads to Lower Rice Yield and Grain Quality by Inhibiting the Grain Filling of Inferior Grains. Agriculture 12 : 962.
  22. Zhou, C., Y. Huang, B. Jia, Y. Wang, Y. Wang, Q. Xu, R. Li, S. Wang, and F. Dou. 2018. Effects of Cultivar, Nitrogen Rate, and Planting Density on Rice-Grain Quality. Agronomy 8 : 246.
  23. Zhu, D., H.-C. Zhang, B.-W. Guo, K. Xu, Q.-G. Dai, H.-Y. Wei, H. Gao, Y.-J Hu, P.-Y Cui, and Z.-Y. Huo. 2017. Effects of nitrogen level on yield and quality of japonica soft super rice. Journal of Intergrative Agriculture 16(5) : 1018-1027. https://doi.org/10.1016/S2095-3119(16)61577-0