DOI QR코드

DOI QR Code

드론 영상을 이용한 케나프(Hibiscus cannabinus L.) 작물 높이의 노지 표현형 분석

Field Phenotyping of Plant Height in Kenaf (Hibiscus cannabinus L.) using UAV Imagery

  • 장규진 (서울대학교 바이오시스템공학과) ;
  • 김재영 (국립농업과학원 농업생명자원부 유전자공학과) ;
  • 김동욱 (서울대학교 바이오시스템공학과) ;
  • 정용석 (제주대학교 식물자원환경전공) ;
  • 김학진 (서울대학교 바이오시스템공학과)
  • Gyujin Jang (Department of Biosystems Engineering, Seoul National University) ;
  • Jaeyoung Kim (Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administraion) ;
  • Dongwook Kim (Department of Biosystems Engineering, Seoul National University) ;
  • Yong Suk Chung (Deparement of Plant Resources and Environment, Jeju National University) ;
  • Hak-Jin Kim (Department of Biosystems Engineering, Seoul National University)
  • 투고 : 2022.10.17
  • 심사 : 2022.11.10
  • 발행 : 2022.12.01

초록

국내 환경에 적합한 케나프 육종을 위해선 비용, 정확도, 속도가 최적으로 설계된 정량적인 고속탐색법(high-throughput)에 기반한 표현형 분석법이 필요하다. 최근 UAV 기반의 원격탐사 기법의 발달로 노지에서 재배되는 작물의 생육인자들에 대한 대량 데이터를 저비용으로 신속하게 얻을 수 있으며 정확하게 분석하기 위한 연구가 활발하게 진행되고 있다. 본 연구에서는 국내에서 요구되는 케나프의 섬유와 가축 사료로서 육종을 위해 해당 목적과 부합한 케나프 높이를 주요 표현형 인자로 선정하여 UAV-RGB에 SfM 알고리즘 기반의 사진 측량 기술을 적용함으로 높이를 예측하고자 하였다. 기존 방법으로 예측한 작물 높이는 바람에 의한 작물의 흔들림으로 오차가 발생할 수 있으며 키가 2 m 이상 크게 자라 실측도 어려운 문제가 있다. 이러한 문제점을 해결하고자 바람에 흔들리지 않는 일정 높이를 가지는 고정 구조물을 설치하여 기준점을 이용한 모델식으로 기하 보정을 통해 높이 예측성능을 개선하였다. 그 결과 R2는 0.80으로 나타났으며, 보정 전(R2 = 0.80, slope = 0.87, offset = -2.51) 보다 높은 신뢰성(R2 = 0.80, slope = 0.94, offset = -1.62)을 확보하였다. 품종별로 생육단계에 따라 측정한 높이 지도를 통해 얻어진 케나프 키 정보는 품종 별로 유의미한 차이를 보임으로서 해당 방법으로 예측한 케나프 높이가 섬유와 가축 사료 목적의 육종 선발에 활용될 수 있을 것으로 판단하였다.

To use kenaf (Hibiscus cannabinus L.) as a fiber and livestock feed, a high-yielding variety needs to be identified. For this, accurate phenotyping of plant height is required for this breeding purpose due to the strong relationship between plant height and yield. Plant height can be estimated using RGB images from unmanned aerial vehicles (UAV-RGB) and photogrammetry based on Structure from Motion (SfM) algorithms. In kenaf, accurate measurement of height is limited because kenaf stems have high flexibility and its height is easily affected by wind, growing up to 3 ~ 4 m. Therefore, we aimed to identify a method suitable for the accurate estimation of plant height of kenaf and investigate the feasibility of using the UAV-RGB-derived plant height map. Height estimation derived from UAV-RGB was improved using multi-point calibration against the five different wooden structures with known heights (30, 60, 90, 120, and 150 cm). Using the proposed method, we analyzed the variation in temporal height of 23 kenaf cultivars. Our results demontrated that the actual and estimated heights were reliably comparable with the coefficient of determination (R2) of 0.80 and a slope of 0.94. This method enabled the effective identification of cultivars with significantly different heights at each growth stages.

키워드

과제정보

본 논문은 제주대학교 친환경농업연구소(Sustainable Agriculture Research Institute, SARI)의 시험 포장 제공 등과 농림식품기술기획평가원 연구사업(세부과제번호: 322032031WT011)의 지원에 이루어졌으며, 이에 감사드립니다.

참고문헌

  1. Abo-Kaied, H. M. H. and T. A. Abuo Zaid. 2008. Estimation of some genetic parameters for yield and yield components in kenaf (Hibiscus cannabinus L.). Egyptian Journal of Agricultural Research 86: 585-595. https://doi.org/10.21608/ejar.2008.205159
  2. Afzal, M. Z., A. K. Ibrahim, Y. Xu, S. Niyitanga, D. Li, X. Y. Li, and Z. Liwu. 2020. Kenaf (Hibiscus Cannabinus L.) Breeding. Journal of Natural Fibers 19(11) : 4063-4081.
  3. Alexopoulou, E., Y. Papattheohari, M. Christou, and A. Monti. 2013. Keanf: A multi-purpose crop for sever industrial applications. In.: Springer-verlag, London, 1-15
  4. Anisa, W. N., E. N. Afifah, and R. H. Murti. 2022. Selection of tomato breeding lines based on morphological traits associated with high yield potential in double-cross population. Biodiversitas Journal of Biological Diversity 23(6).
  5. Anuar, H. and A. Zuraida. 2011. Improvement in mechanical properties of reinforced thermoplastic elastomer composite with kenaf bast fiber. Composites Part B: Engineering 42 : 462-465. https://doi.org/10.1016/j.compositesb.2010.12.013
  6. Araus, J. L. and J. E. Cairns. 2014. Field high-throughput phenotyping: the new crop breeding frontier. Trends in Plant Science 19 : 52-61. https://doi.org/10.1016/j.tplants.2013.09.008
  7. Bendig, J., A. Bolten, S. Bennertz, J. Broscheit, S. Eichfuss, and G. Bareth. 2014. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sensing 6 : 10395-412. https://doi.org/10.3390/rs61110395
  8. Cho, D., S. G. Lee, W. H. Park, and S. O. Han. 2002. Eco-friendly biocomposite materials using biofibers. Polym Sci Technol. 13 : 460-476.
  9. Deliry, S. I. and U. Avdan. 2021. Accuracy of Unmanned Aerial Systems Photogrammetry and Structure from Motion in Surveying and Mapping: A Review. Journal of the Indian Society of Remote Sensing 49 : 1997-2017.
  10. Echekwu, C. A. and F. A. Showemimo. 2004. Genetic, phenotypic and environmental variances and character associations in Kenaf. African Crop Science Journal 12 : 321-26.
  11. Furukawa, F., Kenji M., Y. K. Saito, and M. Kaneko. 2020. Corn height estimation using UAV for yield prediction and crop monitoring. Unmanned Aerial Vehicle: Applications in Agriculture and Environment 51-69.
  12. Han, G. D., G. J. Jang, J. Kim, D. W. Kim, R. Rodrogues, S. H. Kim, H. J. Kim, and Y. S. Chung. 2021. RGB images-based vegetative index for phenotyping kenaf (Hibiscus cannabinus L.). Plos One 16 : e0256978.
  13. Han, X., J. A. Thomasson, G. C. Bagnall, Z. A. Pugh, D. W. Horne, W. L. Rooney, J. Jung, A. Chang, L. Malambo, and D. A. Cope. 2018. Measurement and calibration of plant-height from fixed-wing UAV images. Sensors 18 : 4092.
  14. Hassan, F., R. Zulkifli, M. J. Ghazali, and C. H. B. C. Azhari. 2017. Kenaf fiber composite in automotive industry: an overview. International Journal on Advanced Science, Engineering and Information Technology 7(1) : 315-321. https://doi.org/10.18517/ijaseit.7.1.1180
  15. Holman, F. H., A. B. Riche, A. Michalski, M. Castle, M. J. Wooster, and M. J. Hawkesford. 2016. High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sensing 8 : 1031.
  16. Hu, P., S. C. Chapman, X. Wang, A. Potgieter, T. D. D. Jordan, Y. Guo, and B. Zheng. 2018. Estimation of plant height using a high throughput phenotyping platform based on unmanned aerial vehicle and self-calibration: example for sorghum breeding. European Journal of Agronomy 95 : 24-32. https://doi.org/10.1016/j.eja.2018.02.004
  17. Hunt, J. E. R. and C. S. Daughtry. 2018. What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? International Journal of Remote Sensing 39 : 5345-5376. https://doi.org/10.1080/01431161.2017.1410300
  18. Jamil, N., G. Kootstra, and L. Kooistra. 2022. Evaluation of Individual Plant Growth Estimation in an Intercropping Field with UAV Imagery. Agriculture 12 : 102.
  19. Jang, G, J., J. Kim, J. K. Yu, H. J. Kim, Y. Kim, D. K. Kim, K. H. Kim, C. W. Lee, and Y. S. Chung. 2020. Cost-effective unmanned aerial vehicle (UAV) platform for field plant breeding application. Remote Sensing 12 : 998.
  20. Kaldor, A. F., C. Karlgren, and H. Verwest. 1990. Kenaf-a fast growing fiber source for papermaking. Tappi Journal, 73 : 205-208.
  21. Kamal, B. I. 2014. Kenaf for biocomposite: an overview. Journal of Science and Technology 6(2).
  22. Kang, M. S. 1997. Using genotype-by-environment interaction for crop cultivar development, Advances in Agronomy 62 : 199-252. https://doi.org/10.1016/S0065-2113(08)60569-6
  23. Kang, S. Y., S. J. Kwon, S. W. Jeong, J. B. Kim, S. H. Kim, and J. Ryu. 2016. An improved kenaf cultivar 'Jangdae' with seed harvesting in Korea. Korean Journal of Breeding Science 48 : 349-354. https://doi.org/10.9787/KJBS.2016.48.3.349
  24. Kawamura, K., H. Asai, T. Yasuda, P. Khanthavong, P. Soisouvanh, and S. Phongchanmixay. 2020. Field phenotyping of plant height in an upland rice field in Laos using low-cost small unmanned aerial vehicles (UAVs). Plant Production Science 23: 452-465. https://doi.org/10.1080/1343943X.2020.1766362
  25. Kim, D. W., H. S. Yun, S. J. Jeong, Y. S. Kwon, S. G. Kim, W. S. Lee, and H. J. Kim. 2018. Modeling and testing of growth status for Chinese cabbage and white radish with UAV-based RGB imagery Remote Sensing 10 : 563.
  26. Kim, J., G. D. Han, G. Muthukathan, R. Rodrogues, D. Y. Hyun, S. H. Kim, J. K. Yu, J. Park, S. C. Yoo, and Y. C. Chung. 2021. What Traits Should Be Measured for Biomass in Kenaf? Plants 10 : 1394.
  27. Large, E. C. 1954. Growth stages in cereals. Illustration of the Feekes scale. Plant pathology 3 : 128-129. https://doi.org/10.1111/j.1365-3059.1954.tb00716.x
  28. Madec, S., F. Baret, B. D. Solan, S. Thomas, D. D. S. Jezequel, M. H. G. Colombeau, and A. Comar. 2017. High-throughput phenotyping of plant height: comparing unmanned aerial vehicles and ground LiDAR estimates. Frontiers in Plant Science 8 : 2002.
  29. Maes, W. H. and K. Steppe. 2019. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends in Plant Science 24 : 152-164. https://doi.org/10.1016/j.tplants.2018.11.007
  30. Nishino, T., K. Hirao, M. Kotera, K. Nakamae, and H. Inagaki. 2003. Kenaf reinforced biodegradable composite. Composites Science and Technology 63 : 1281-1286. https://doi.org/10.1016/S0266-3538(03)00099-X
  31. Niu, Y., L. Zhang, H. Zhang, W. Han, and X. Peng. 2019. Estimating above-ground biomass of maize using features derived from UAV-based RGB imagery, Remote Sensing 11 : 1261.
  32. Oh, S. D. T. M., C. Ryu, K. Lee, S. Cho, and N. J. Choi. 2018. In vitro and in vivo evaluation of kenaf (Hibiscus cannabinus L.) as a roughage source for beef cattle. Asian-Australasian Journal of Animal Sciences 31 : 1598.
  33. Park, J. M. and I. H. Kim. 1965. Studies on the Kenaf variety of genus Hibiscus II. Varietal differences of photoperiodic response in Kenaf, The Research Report. Rural Development. Administration 8 (1) : 49-55.
  34. Ryu, J., S. J. Kwon, D. G. Kim, M. K. Lee, J. M. Kim, Y. D. Jo, S. H. Kim, S. W. Jeong, K. Y. Kang, and S. W. Kim. 2017. Morphological characteristics, chemical and genetic diversity of kenaf (Hibiscus cannabinus L.) genotypes. Journal of Plant Biotechnology 44 : 416-430.
  35. Shanmugapriya, P., S. Rathika, T. Ramesh, and P. Janaki. 2019. Applications of remote sensing in agriculture-A Review. International Journal of Current Microbiology and Applied Sciences 8 : 2270-2283. https://doi.org/10.20546/ijcmas.2019.801.238
  36. Siepe, T., D. Ventrella, and E. Lapenta. 1997. Evaluation of genetic variability in a collection of Hibiscus cannabinus (L.) and Hibiscus spp (L.). Industrial Crops and Products 6 : 343-352. https://doi.org/10.1016/S0926-6690(97)00025-3
  37. Volpato, L., F. Pinto, L. Gonzalez-Perez, I. G. Thompson, A. Borem, M. Reynolds, B. Gerard, G. Molero, and Jr, F. A. Rodrigues. 2021. High throughput field phenotyping for plant height using UAV-based RGB imagery in wheat breeding lines: feasibility and validation. Frontiers in Plant Science 12 : 591587.
  38. Webber III, C. L. 1993a. Crude protein and yield components of six kenaf cultivars as affected by crop maturity. Industrial Crops and Products 2 : 27-31. https://doi.org/10.1016/0926-6690(93)90007-V
  39. Webber III, C. L. 1993b. Yield components of five kenaf cultivars. Agronomy Journal, 85 : 533-35. https://doi.org/10.2134/agronj1993.00021962008500030002x
  40. Webber III, C. L., H. L. Bhardwaj, and K. B. Venita. 2002. Kenaf production: fiber, feed, and seed, Trends in new crops and new uses. ASHS Press, Alexandria VA : 327-39.
  41. Willkomm, M., A. Bolten, and G. Bareth. 2016. Non-destructive monitoring of rice by hyperspectral in-field spectrometry and UAV-based remote sensing: case study of field-grown rice in North Rhine-Westphalia. International Archives of the Photogrammetry. Remote Sensing & Spatial Information Sciences 41.
  42. Wojtowicz, M., A. Wojtowicz, and J. Piekarczyk. 2016. Application of remote sensing methods in agriculture. Communications in Biometry and Crop Science 11 : 31-50.
  43. Xie, T., J. Li, C. Yang, Z. Jiang, Y. Chen, L. Guo, and J. Zhang. 2021. Crop height estimation based on UAV images: Methods, errors, and strategies. Computers and Electronics in Agriculture 185 : 106155.