DOI QR코드

DOI QR Code

How Do Korean and U.S. Elementary Preservice Teachers Analyze Students' Addition and Subtraction Computational Strategies and Errors?

한국과 미국 예비 초등교사는 자연수 덧셈과 뺄셈 연산에 대한 학생의 수학적 전략과 오류를 어떻게 분석하는가?

  • Received : 2022.11.29
  • Accepted : 2022.12.28
  • Published : 2022.12.30

Abstract

This study explores and compares Korean and U.S. elementary preservice teachers' analytic approaches of students' addition and subtraction computational strategies. Twenty-six Korean and twenty U.S. elementary preservice teachers participated in the study. Participants were asked to analyze mathematical approaches and errors from students' addition and subtraction operations. Preservice teachers' written documents were analyzed by applying open coding and inductive coding based on the grounded theory. As a result, the pattern of error analysis and interpretation of students' addition computations were similar for both Korean and U.S. preservice teachers whereas there were some differences in the analysis of students' subtraction computations. Both Korean and U.S. preservice teachers had difficulties identifying students' strategies and errors for a complicated and unconventional computational approach. Results also indicated that preservice teachers' noticing and interpretation of students' strategies and errors were influenced by their K-12 mathematics curriculum and teacher education program. This study suggests implications and future directions for teacher education, more contextualized teacher preparation programs and balanced connection to the K-12 curriculum.

본 연구는 덧셈 뺄셈 연산에서 보이는 수학적 전략을 한국과 미국의 예비 초등교사가 어떻게 분석하는지 비교 분석한다. 한국의 예비교사 26명과 미국의 예비교사 20명이 본 연구에 참여하였으며, 제시된 덧셈 뺄셈 연산에서 어떠한 수학적 오류가 있는지 서술하게 하였다. 수합된 46명의 예비교사의 기록은 연구의 주요 데이터로 근거 이론에 기반을 두어 오픈 코딩과 귀납 코딩하고, 통계 처리하여 혼합 연구를 진행하였다. 그 결과, 덧셈 연산에 대한 오류와 전략 분석에서 양국의 예비교사의 응답 양상은 유사하였으나, 뺄셈 연산에서는 차이가 있음을 확인하였다. 또한, 학생의 풀이 전략이 다단계로 구성이 되어 있거나 전형적이지 않을 때, 양국의 예비교사가 이를 분석하는데 어려워함을 확인하였다. 국제 비교 연구 결과를 바탕으로 양국의 예비교사 교육에 공통적인 시사점을 제공하고, 각국의 예비교사 교육에 새로운 방향을 논하였다.

Keywords

Acknowledgement

이 연구는 2022학년도 고려대학교 사범대학 특별연구비 지원을 받아 수행되었음.

References

  1. 교육부 (2015). 수학과 교육과정. 교육부 고시 제2020-236호 [별책 8].
  2. 김수미 (2003). 수학과 오류의 진단과 처방에 관한 교사용 자료 개발 연구. 학교수학, 5(2), 209-221.
  3. 김희정, 고은성, 이동환, 조진우, 조형미, 최지선, 한채린, 황지현 (2020). 수학 학습 어려움 진단을 위한 평가 문항 개발. 한국과학창의재단 연구보고서.
  4. 김희정, 조형미, 고은성, 이동환, 조진우, 최지선, 한채린, 황지현 (2022), 초등학교 수학 학습 어려움 진단을 위한 평가 문항 개발 및 적용 연구. 한국학교수학회논문집, 25(3), 261-278. https://doi.org/10.30807/KSMS.2022.25.3.003
  5. 김희정, 한채린, 배미선, 권오남 (2017). 수학 교사의 주목하기와 반응적 교수의 관계: 모든 학생의 수학적 사고 계발을 지향하는 수업 상황에서. 수학교육, 56(3). 341-363.
  6. 우정한, 김영걸, 신재훈 (2007). 수학학습장애 학생의 연산 오류 특성. 특수교육저널 : 이론과 실천, 8(3), 575-596.
  7. 이승국 (2011). 한국 교사들과 미국 교사들의 감성지능 비교 연구. 한국초등교육, 21(3), 119-130. https://doi.org/10.20972/KJEE.21.3.201101.119
  8. 정영근 (2010). 세계화시대 비교교육학 연구의 문제와 과제 -국제교육정책 비교연구의 문제점을 중심으로-. 교육의 이론과 실천, 15(1), 123-142.
  9. 최진숙, 유현주 (2006). 덧셈.뺄셈의 오류유형 분석 및 지도방안에 대한 연구 -초등학교 3학년을 중심으로-. 교과교육학연구, 10(2), 303-327.
  10. 장수연, 안병곤 (2010). 수와 연산영역의 오류유형에 따른 효과적인 지도 방안. 한국초등수학교육학회지, 14(2), 355-376.
  11. Ashlock, R. B. (2006). Error patterns in computation: Using error patterns to improve instruction. New Jersey: Pearson Merrill Prentice Hall.
  12. Bailey, A. L., & Drummond, K. V. (2006). Who is at risk and why? Teachers' reasons for concern and their understanding and assessment of early literacy. Educational Assessment, 11(3), 149-178. https://doi.org/10.1207/s15326977ea1103&4_2
  13. Ball, D. L. (1991). Teaching mathematics for understanding: What do teachers need to know matter? In M. Kennedy (Ed.), Teaching academic subjects to diverse learners (pp. 63-83). New York: Teachers College Press.
  14. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching. J ournal of teacher education, 59(5), 389-407.
  15. Ball, D. L., & Wilson, S. M. (1990). Knowing the subject and learning to teach it: Examining assumptions about becoming a mathematics teacher. East Lansing, MI: National Center for Research on Teacher Education.
  16. Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in education, 5(1), 7-74.
  17. Bartell, T., Bieda, K., Breyfogle, M. L., Crespo, S., Dominguez, H., Drake, C., & Herbel-Eisenmann, B. (2013). Strong is the silence: Challenging systems of privilege and oppression in mathematics teacher education. Journal of Urban Mathematics Education, 6(1), 6-18.
  18. Borasi, R. (1987). Exploring mathematics through the analysis of errors. For the Learning of Mathematics, 7(3), 2-8.
  19. Brown, J. S., & Vanlehn, K. (1980). Repair theory: A generative theory of bugs in procedural skills. Congnitive Science, 4(4), 379-426. https://doi.org/10.1207/s15516709cog0404_3
  20. Brown, J. S., & Burton, R. R. (1978). Diagnostic model for procedural bugs in basic mathematical skills. Cognitive Science, 2(2), 155-192. https://doi.org/10.1207/s15516709cog0202_4
  21. Clarke, D. J., Keitel, C., & Shimizu, Y. (2006). Mathematics Classrooms in Twelve countries: The Insider's Perspective. Rotterdam, Netherlands: Sense publishers.
  22. Ding, M. (2008). Teacher knowledge necessary to address student errors and difficulties about equivalent fraction. In G. Kulm (Ed.), Teacher Knowledge and Practice in Middle Grades mathematics (pp. 147-171). Rotterdam, Netherlands: Sense publishers.
  23. Fuller, R. A. (1996). Elementary teachers' pedagogical content knowledge of mathematics. Mid-western Educational Research Association Conference, Chicago.
  24. Fyfe, E. R., & Rittle-Johnson, B. (2017). Mathematics practice without feedback: A desirable difficulty in a classroom setting. Instructional Science, 45(2), 177-194. https://doi.org/10.1007/s11251-016-9401-1
  25. Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers' understanding of fundamental mathematics in China and the United States. New York: Routledge.
  26. McLaren B. M., Adams, D., Durkin, K., Goguadze, G., Mayer, R. E., Rittle-Johnson, B., Rittle-Johnson, S., Isotani, S., & Velsen, M. V. (2012). To err is human, to explain and correct is divine: A study of interactive erroneous examples with middle school math students. In A. Ravenscroft, S. Lindstaedt, C. D. Kloos & D. Hernandez-Leo (Eds.), 21st Century Learning for 21st Century Skills (pp. 222-235). New York: Springer.
  27. Murchan, D., & Oldham, E. (2011). Exploring diagnostic error analysis methodologies in the context of e-assessment in primary-level mathematics. Annual meeting of the Association for Educational Assessment, Belfast.
  28. Peng, A., & Luo, Z. (2009). A framework for examining mathematics teacher knowledge as used in error analysis. For the Learning of Mathematics, 29(3), 22-25.
  29. Ruiz-Primo, M. A., Li, M., Tsai, S., & Schneider, J. (2010). Testing one premise of scientific inquiry in science classrooms: Examining students' scientific explanations and student learning. Journal of Research in Science Teaching, 47(5), 583-608.
  30. Schneider, M. C., & Gowan, P. (2013). Investigating teachers' skills in interpreting evidence of student learning. Applied Measurement in Education, 26(3), 191-204. https://doi.org/10.1080/08957347.2013.793185
  31. Shalem, Y., Sapire, I., & Sorto, M. (2014). Teachers' explanations of learners' errors in standardised mathematics assessments. Pythagoras, 35(1), 1-11. doi:https://doi.org/10.4102/pythagoras.v35i1.254
  32. Shepard, L. A. (2000). The role of assessment in a learning culture. Educational researcher, 29(7), 4-14. https://doi.org/10.3102/0013189X029007004
  33. Son, J. W. (2013). How preservice teachers interpret and respond to student errors: ratio and proportion in similar rectangles. Educational Studies in Mathematics, 84, 49-70. https://doi.org/10.1007/s10649-013-9475-5
  34. Son. J. W. (2016). Preservice teachers' response and feedback type to correct and incorrect student-invented strategies for subtracting whole numbers. The Journal of Mathematical Behavior, 42, 49-68.
  35. Young, R. M., & O'shea, T. (1981). Errors in children's subtraction. Cognitive Science, 5(2), 153-177. https://doi.org/10.1207/s15516709cog0502_3
  36. Vermeulen, J. A., Beguin, A., Scheltens, F., & Eggen, T. J. M. (2020). Diagnostic assessment in third-grade subtraction: The relation between bridging errors, number of errors and mathematical ability. Assessment in Education, 27(6), 687-706.