DOI QR코드

DOI QR Code

Characterization of 3D Printed Re-entrant Strips Using Shape Memory Thermoplastic Polyurethane with Various Infill Density

채우기 밀도별 형상 기억 TPU 3D 프린팅 Re-entrant 스트립의 특성 분석

  • Imjoo Jung (Dept. Fashion & Textiles, Dong-A University) ;
  • Sunhee Lee (Dept. Fashion Design, Dong-A University)
  • 정임주 (동아대학교 의상섬유학과) ;
  • 이선희 (동아대학교 패션디자인학과)
  • Received : 2022.11.25
  • Accepted : 2022.12.12
  • Published : 2022.12.31

Abstract

This study proposes to develop a 3D printed re-entrant(RE) strip by shape memory thermoplastic polyurethane that can be deformed and recovered by thermal stimulation. The most suitable 3D printing infill density condition and temperature condition during shape recovery for mechanical behavior were confirmed. As the poisson's ratio indicated, the higher the recovery temperature, the closer the poisson's ratio to zero and the better the auxetic properties. After recovery testing for five minutes, it appeared that the shape recovery ratio was the highest at 70℃. The temperature range when the shape recovery ratio appeared to be more than 90% was a recovery temperature of more than 50℃ and 60℃ when deformed under a constant load of 100 gf and 300 gf, respectively. This indicated that further deformation occurred after maximum recovery when recovered at a temperature of 80℃, which is above the glass transition temperature range. As for REstrip by infill density, a shape recovery properties of 100% was superior than 50%. Additionally, as the re-entrant structure exhibited a shape recovery ratio of more than 90%, and exhibited auxetic properties. It was confirmed that the infill density condition of 100% and the temperature condition of 70℃ are suitable for REstrips for applying the actuator.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2021R1A4A1022059).

References

  1. Abrisham, M., Panahi-Sarmad, M., Mir Mohamad Sadeghi, G., Arjmand, M., Dehghan, P., & Amirkiai, A. (2020). Microstructural design for enhanced mechanical property and shape memory behavior of polyurethane nanocomposites - Role of carbon nanotube, montmorillonite, and their hybrid fillers. Polymer Testing, 106642. doi:10.1016/j.polymertesting.2020.106642
  2. Ardebili, M. K., Ikikardaslar, K. T., Chauca, E., & Delale, F. (2018). Behavior of soft 3D-printed auxetic structures under various loading conditions. Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition, Pittsburgh, Pennsylvania, USA, pp. V009T12A027.
  3. Choi, H. Y., Shin, E. J., & Lee, S. (2022). Design and evaluation of 3D-printed auxetic structures coated by CWPU/graphene as strain sensor. Scientific Reports, 12, 7780. doi:10.1038/s41598-022-11540-x
  4. Dong, K., Panahi-Sarmad, M., Cui Z., Huang, X., & Xiao, X. (2021). Electro-induced shape memory effect of 4D printed auxetic composite using PLA/TPU/CNT filament embedded synergistically with continuous carbon fiber - A theoretical & experimental analysis. Composites Part B - Engineering, 220, 108994. doi:10.1016/j.compositesb.2021.108994
  5. Drobny, J. G. (2014). Handbook of thermoplastic elastomers. Amsterdam: Elviser
  6. Gorbunova, M. A., Anokhin, D. V., & Badamshina, E. R. (2020). Recent advances in the synthesis and application of thermoplastic semicrystalline shape memory polyurethanes. Polymer Science, Series B, 62(5), 427-450. doi:10.1134/s1560090420050073
  7. Gu, X., & Mather, P. T. (2012). Entanglement-based shape memory polyurethanes - Synthesis and characterization. Polymer, 53(25), 5924-5934. doi:10.1016/j.polymer.2012.09.056
  8. Ji, X., Gao, F., Geng, Z., & Li, D. (2021). Fabrication of thermoplastic polyurethane/polylactide shape-memory blends with tunable optical and mechanical properties via a bilayer structure design. Polymer Testing, 97, 107135. doi:10.1016/j.polymertesting.2021.107135
  9. Jung, I., Kim, H., & Lee, S. (2021). Characterizations of 3D printed re-entrant pattern/aramid knit composite prepared by various tilting angles. Fashion and Textiles, 8, 44. doi:10.1186/s40691-021-00273-6
  10. Jung, I., Park, Y., Choi, Y., Kim, J., & Lee, S. (2022a). A study on the motion control of 3D printed fingers. Textile Science and Engineering, 24(3), 333-345. doi:10.5805/SFTI.2022.24.3.333
  11. Jung, I., Shin, E., & Lee, S. (2022b). Morphological characteristics according to the 3D printing extrusion temperature of TPU filaments for different hardnesses. Textile Science and Engineering, 59(1), 36-46. doi:10.12772/TSE.2022.59.036
  12. Jung, I., & Lee, S. (2022). Compressive properties of 3D printed TPU samples. Journal of the Korean Society of Clothing and Textiles, 46(3), 481-493. doi:10.5850/JKSCT.2022.46.3.481
  13. Kabir, S., & Lee, S. (2020). Study of shape memory and tensile property of 3D printed sinusoidal sample/nylon composite focused on various thicknesses and shape memory cycles. Polymers, 12(7), 1600. doi:10.3390/polym12071600
  14. Kabir, S., Kim, H., & Lee, S. (2020). Physical property of 3D-printed sinusoidal pattern using shape memory TPU filament. Textile Research Journal, 90(21-22), 2399-2410. doi:10.1177/0040517520919750
  15. Kim, H., & Lee, S. (2020). Mechanical properties of 3D printed re-entrant pattern with various hardness types of TPU filament manufactured through FDM 3D printing. Textile Science and Engineering, 57, 166-176. doi:10.12772/TSE.2020.57.166
  16. Kim, H., Kabir, S., & Lee, S. (2021). Mechanical properties of 3D printed re-entrant pattern/neoprene composite textile by pattern tilting angle of pattern. Journal of the Korean Society of Clothing and Textiles, 45(1), 106-122. doi:10.5850/JKSCT.2021.45.1.106
  17. Lakes, R. S. (2017). Negative poisson's ratio materials - Auxetic solids. Annual Review of Materials Research, 47, 63-81. doi:10. 1146/annurev-matsci-070616-124118 https://doi.org/10.1146/annurev-matsci-070616-124118
  18. Li, T., Liu, F., & Wang, L. (2020). Enhancing indentation and impact resistance in auxetic composite materials. Composites Part B - Engineering, 108229. doi:10.1016/j.compositesb.2020.108229
  19. Momeni, F., Liu, X., & Ni, J. (2017). A review of 4D printing. Materials and Design. 122, 42-79. Doi:10.1016/j.matdes.2017.02.068
  20. Nugroho, W. T., Dong, Y., Pramanik, A., Leng, J., & Ramakrishna, S. (2021). Smart polyurethane composites for 3D or 4D printing - General-purpose use, sustainability and shape memory effect. Composites Part B - Engineering, 223, 109104. doi:10.1016/j.compositesb.2021.109104
  21. Raasch, J., Ivey, M., Aldrich, D., Nobes, D. S., & Ayranci, C. (2015). Characterization of polyurethane shape memory polymer processed by material extrusion additive manufacturing. Additive Manufacturing, 8, 132-141. doi:10.1016/j.addma.2015.09.004
  22. Ren, X., Das, R., Tran, P., Ngo, T. D., & Xie, Y. M. (2018). Auxetic metamaterials and structures - A review. Smart Materials and Structures, 27(2), 023001. doi:10.1088/1361-665x/aaa61c
  23. Sadasivuni, K. K., Deshmukh, K., Al-Maadeed, M. A. S. (2020). 3D and 4D printing of polymer nanocomposite materials: processes, applications, and challenges. Amsterdam: Elsevier.
  24. Shin, E. J., Jung, Y. S., Chio, H. Y., & Lee, S. (2022a). Synthesis and fabrication of biobased thermoplastic polyurethane filament for FDM 3D printing. Applied Polymer, 139(40), e52959. doi:10.1002/pen.26075
  25. Shin, E. J., Park, Y. Y., Jung, Y. S., Choi, H. Y., & Lee, S. (2022b). Fabrication and characteristics of flexible thermoplastic polyurethane filament for fused deposition modeling three-dimensional printing. Polymer Engineering and Science, 62(9), 2947-2957. doi:10.1002/pen.26075
  26. Simons, M. F., Digumarti, K. M., Conn, A. T., & Rossiter, J. (2019). Tiled auxetic cylinders for soft robots. Proceedings of the 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), Seoul, Korea, pp. 62-67.
  27. Song, J. J., Chang, H. H., & Nagui b, H. E. (2015a). Biocompatible shape memory polymer actuators with high force capabilities. European Polymer Journal, 67, 186-198. doi:10.1016/j.eurpolymj.2015.03.067
  28. Song, J. J., Chang, H. H., & Naguib, H. E. (2015b). Design and characterization of biocompatible shape memory polymer(SMP) blend foams with a dynamic porous structure. Polymer, 56, 82-92. doi: 10.1016/j.polymer.2014.09.062
  29. Valvez, S., Reis, P. N. B., Susmel, L., & Berto, F. (2021). Fused filament fabrication-4D-printed shape memory polymers - A review. Polymers, 13(5), 701. doi:10.3390/polym13050701
  30. Villacres, J., Nobes, D., & Ayranci, C. (2020). Additive manufacturing of shape memory polymers - Effects of print orientation and infill percentage on shape memory recovery properties. Rapid Prototyping Journal, 26(9), 1593-1602. doi:10.1108/rpj-09-2019-0239
  31. Wang, Y., Zheng, Z., Ding, X., & Peng, Y. (2014). Relation between temperature memory effect and multiple-shape memory behaviors based on polymer networks. RSC Advances, 4(39), 20364. doi:10.1039/c4ra02600d
  32. Xi, H., Xu, J., Cen, S., & Huang, S. (2021). Energy absorption characteristics of a novel asymmetric and rotatable re-entrant honeycomb structure. Acta Mechanica Solida Sinica, 34(4), 550-560. doi:10.1007/s10338-021-00219-x
  33. Xu, X., Fan, P., Ren, J., Cheng, Y., Ren, J., Zhao, J., & Song, R. (2018). Self-healing thermoplastic polyurethane(TPU)/polycaprolactone (PCL)/multi-wall carbon nanotubes (MWCNTs) blend as shape-memory composites. Composites Science and Technology, 168(10), 255-262. doi:10.1016/j.compscitech.2018.10.003