Acknowledgement
본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2021R1A4A1022059).
References
- Abrisham, M., Panahi-Sarmad, M., Mir Mohamad Sadeghi, G., Arjmand, M., Dehghan, P., & Amirkiai, A. (2020). Microstructural design for enhanced mechanical property and shape memory behavior of polyurethane nanocomposites - Role of carbon nanotube, montmorillonite, and their hybrid fillers. Polymer Testing, 106642. doi:10.1016/j.polymertesting.2020.106642
- Ardebili, M. K., Ikikardaslar, K. T., Chauca, E., & Delale, F. (2018). Behavior of soft 3D-printed auxetic structures under various loading conditions. Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition, Pittsburgh, Pennsylvania, USA, pp. V009T12A027.
- Choi, H. Y., Shin, E. J., & Lee, S. (2022). Design and evaluation of 3D-printed auxetic structures coated by CWPU/graphene as strain sensor. Scientific Reports, 12, 7780. doi:10.1038/s41598-022-11540-x
- Dong, K., Panahi-Sarmad, M., Cui Z., Huang, X., & Xiao, X. (2021). Electro-induced shape memory effect of 4D printed auxetic composite using PLA/TPU/CNT filament embedded synergistically with continuous carbon fiber - A theoretical & experimental analysis. Composites Part B - Engineering, 220, 108994. doi:10.1016/j.compositesb.2021.108994
- Drobny, J. G. (2014). Handbook of thermoplastic elastomers. Amsterdam: Elviser
- Gorbunova, M. A., Anokhin, D. V., & Badamshina, E. R. (2020). Recent advances in the synthesis and application of thermoplastic semicrystalline shape memory polyurethanes. Polymer Science, Series B, 62(5), 427-450. doi:10.1134/s1560090420050073
- Gu, X., & Mather, P. T. (2012). Entanglement-based shape memory polyurethanes - Synthesis and characterization. Polymer, 53(25), 5924-5934. doi:10.1016/j.polymer.2012.09.056
- Ji, X., Gao, F., Geng, Z., & Li, D. (2021). Fabrication of thermoplastic polyurethane/polylactide shape-memory blends with tunable optical and mechanical properties via a bilayer structure design. Polymer Testing, 97, 107135. doi:10.1016/j.polymertesting.2021.107135
- Jung, I., Kim, H., & Lee, S. (2021). Characterizations of 3D printed re-entrant pattern/aramid knit composite prepared by various tilting angles. Fashion and Textiles, 8, 44. doi:10.1186/s40691-021-00273-6
- Jung, I., Park, Y., Choi, Y., Kim, J., & Lee, S. (2022a). A study on the motion control of 3D printed fingers. Textile Science and Engineering, 24(3), 333-345. doi:10.5805/SFTI.2022.24.3.333
- Jung, I., Shin, E., & Lee, S. (2022b). Morphological characteristics according to the 3D printing extrusion temperature of TPU filaments for different hardnesses. Textile Science and Engineering, 59(1), 36-46. doi:10.12772/TSE.2022.59.036
- Jung, I., & Lee, S. (2022). Compressive properties of 3D printed TPU samples. Journal of the Korean Society of Clothing and Textiles, 46(3), 481-493. doi:10.5850/JKSCT.2022.46.3.481
- Kabir, S., & Lee, S. (2020). Study of shape memory and tensile property of 3D printed sinusoidal sample/nylon composite focused on various thicknesses and shape memory cycles. Polymers, 12(7), 1600. doi:10.3390/polym12071600
- Kabir, S., Kim, H., & Lee, S. (2020). Physical property of 3D-printed sinusoidal pattern using shape memory TPU filament. Textile Research Journal, 90(21-22), 2399-2410. doi:10.1177/0040517520919750
- Kim, H., & Lee, S. (2020). Mechanical properties of 3D printed re-entrant pattern with various hardness types of TPU filament manufactured through FDM 3D printing. Textile Science and Engineering, 57, 166-176. doi:10.12772/TSE.2020.57.166
- Kim, H., Kabir, S., & Lee, S. (2021). Mechanical properties of 3D printed re-entrant pattern/neoprene composite textile by pattern tilting angle of pattern. Journal of the Korean Society of Clothing and Textiles, 45(1), 106-122. doi:10.5850/JKSCT.2021.45.1.106
- Lakes, R. S. (2017). Negative poisson's ratio materials - Auxetic solids. Annual Review of Materials Research, 47, 63-81. doi:10. 1146/annurev-matsci-070616-124118 https://doi.org/10.1146/annurev-matsci-070616-124118
- Li, T., Liu, F., & Wang, L. (2020). Enhancing indentation and impact resistance in auxetic composite materials. Composites Part B - Engineering, 108229. doi:10.1016/j.compositesb.2020.108229
- Momeni, F., Liu, X., & Ni, J. (2017). A review of 4D printing. Materials and Design. 122, 42-79. Doi:10.1016/j.matdes.2017.02.068
- Nugroho, W. T., Dong, Y., Pramanik, A., Leng, J., & Ramakrishna, S. (2021). Smart polyurethane composites for 3D or 4D printing - General-purpose use, sustainability and shape memory effect. Composites Part B - Engineering, 223, 109104. doi:10.1016/j.compositesb.2021.109104
- Raasch, J., Ivey, M., Aldrich, D., Nobes, D. S., & Ayranci, C. (2015). Characterization of polyurethane shape memory polymer processed by material extrusion additive manufacturing. Additive Manufacturing, 8, 132-141. doi:10.1016/j.addma.2015.09.004
- Ren, X., Das, R., Tran, P., Ngo, T. D., & Xie, Y. M. (2018). Auxetic metamaterials and structures - A review. Smart Materials and Structures, 27(2), 023001. doi:10.1088/1361-665x/aaa61c
- Sadasivuni, K. K., Deshmukh, K., Al-Maadeed, M. A. S. (2020). 3D and 4D printing of polymer nanocomposite materials: processes, applications, and challenges. Amsterdam: Elsevier.
- Shin, E. J., Jung, Y. S., Chio, H. Y., & Lee, S. (2022a). Synthesis and fabrication of biobased thermoplastic polyurethane filament for FDM 3D printing. Applied Polymer, 139(40), e52959. doi:10.1002/pen.26075
- Shin, E. J., Park, Y. Y., Jung, Y. S., Choi, H. Y., & Lee, S. (2022b). Fabrication and characteristics of flexible thermoplastic polyurethane filament for fused deposition modeling three-dimensional printing. Polymer Engineering and Science, 62(9), 2947-2957. doi:10.1002/pen.26075
- Simons, M. F., Digumarti, K. M., Conn, A. T., & Rossiter, J. (2019). Tiled auxetic cylinders for soft robots. Proceedings of the 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), Seoul, Korea, pp. 62-67.
- Song, J. J., Chang, H. H., & Nagui b, H. E. (2015a). Biocompatible shape memory polymer actuators with high force capabilities. European Polymer Journal, 67, 186-198. doi:10.1016/j.eurpolymj.2015.03.067
- Song, J. J., Chang, H. H., & Naguib, H. E. (2015b). Design and characterization of biocompatible shape memory polymer(SMP) blend foams with a dynamic porous structure. Polymer, 56, 82-92. doi: 10.1016/j.polymer.2014.09.062
- Valvez, S., Reis, P. N. B., Susmel, L., & Berto, F. (2021). Fused filament fabrication-4D-printed shape memory polymers - A review. Polymers, 13(5), 701. doi:10.3390/polym13050701
- Villacres, J., Nobes, D., & Ayranci, C. (2020). Additive manufacturing of shape memory polymers - Effects of print orientation and infill percentage on shape memory recovery properties. Rapid Prototyping Journal, 26(9), 1593-1602. doi:10.1108/rpj-09-2019-0239
- Wang, Y., Zheng, Z., Ding, X., & Peng, Y. (2014). Relation between temperature memory effect and multiple-shape memory behaviors based on polymer networks. RSC Advances, 4(39), 20364. doi:10.1039/c4ra02600d
- Xi, H., Xu, J., Cen, S., & Huang, S. (2021). Energy absorption characteristics of a novel asymmetric and rotatable re-entrant honeycomb structure. Acta Mechanica Solida Sinica, 34(4), 550-560. doi:10.1007/s10338-021-00219-x
- Xu, X., Fan, P., Ren, J., Cheng, Y., Ren, J., Zhao, J., & Song, R. (2018). Self-healing thermoplastic polyurethane(TPU)/polycaprolactone (PCL)/multi-wall carbon nanotubes (MWCNTs) blend as shape-memory composites. Composites Science and Technology, 168(10), 255-262. doi:10.1016/j.compscitech.2018.10.003