DOI QR코드

DOI QR Code

Developing a Prototype of Motion-sensing Smart Leggings

동작센싱 스마트레깅스 프로토타입 개발

  • Received : 2022.10.04
  • Accepted : 2022.11.30
  • Published : 2022.12.31

Abstract

This study focusses on the development of a motion-sensing smart leggings prototype with the help of a module that monitors motion using a fiber-type stretch sensor. Additionally, it acquires data on Electrocardiogram (ECG), respiration, and body temperature signals, for the development of smart clothing used in online exercise coaching and customized healthcare systems. The research process was conducted in the following order: 1) Fabrication of a fiber-type elastic strain sensor for motion monitoring, 2) Positioning and attaching the sensor, 3) Pattern development and three-dimensional (3D) design, 4) Prototyping 5) Wearability test, and 6) Expert evaluation. The 3D design method was used to develop an aesthetic design, and for sensing accurate signal acquisition functions, wearability tests, and expert evaluation. As a result, first, the selection or manufacturing of an appropriate sensor for the function is of utmost importance. Second, the selection and attachment method of a location that can maximize the function of the sensor without interfering with any activity should be studied. Third, the signal line selection and connection method should be considered, and fourth, the aesthetic design should be reflected along with functional verification. In addition, the selection of an appropriate material is important, and tests for washability and durability must be made. This study presented a manufacturing method to improve the functionality and design of smart clothing, through the process of developing a prototype of motion-sensing smart leggings.

Keywords

Acknowledgement

이 논문은 2022년도 정부의 재원으로 한국연구재단의 기본연구사업의 지원을 받아 수행된 연구임(과제번호: 2022R1F1A1074625).

References

  1. 'AIO Sleeve'. (2018). KOMODO. Retrieved April 8, 2022, from https://komodotec.com/product/aio-sleeve/
  2. 'Athos'. (2012). Liveathos. Retrieved April 8, 2022, from https://torontolife.com/style/athos-wearable-tech-workout-gear-sportchek/
  3. 'Bio Man100'. (2017). AiQ Smart Clothing. Retrieved April 1, 2022, from https://www.aiqsmartclothing.com/product service/ biomanplus/
  4. 'Cityzen Dshirt'. (2008). Cityzen Sciences. Retrieved April 8, 2022, from http://cityzensciences.fr/en
  5. 'Catapult'. (2006). Payertek. Retrieved April 12, 2022, from https://www.catapultsports.com/
  6. Chae, J. M., Cho, H. S., & Lee, J. H. (2009). A study on consumer acceptance of commercialized smart clothing. Emotional Science, 12(2), 181-192.
  7. Cho, H. Y., Lee, J. H., Lee, C. K., & Lee, M. H. (2006). Development of smart clothing design prototype for healthcare based on biosignal measurement technology. Korean HCI Society Conference, 9(2), pp. 141-150.
  8. Cho, G. S., Yang, Y. J., & Seong, M. S. (2008). Bio-monitoring smart clothing and E-textile development status. Journal of the Korean Apparel Industry Association, 10(1), 1-10.
  9. Castano, L. M., & Flatau, A. B. (2014). Smart fabric sensors and e-textile technologies - A review. Smart materials & structures, 23(5), 053001. doi:10.1088/0964-1726/23/5/053001
  10. Dehghani, M., Abubakar., A. M., & Pashna, M. (2022), Market-driven management of start-ups - The case of wearable technology. Applied Computing and Informatics, 18(2), 45-60. doi:10.1016/j.aci.2018.11.002
  11. 'Healthwatch'. (2012). Master Attention. Retrieved April 4, 2022, from https://www.healthwatch.co.uk/
  12. Hong, Y. H. (2017). A study on improving the performance of a smart jacket for cycling. Unpublished master's thesis, Seoul National University, Seoul
  13. Haghi, M., Thurow, K., & Stoll, R. (2017). Wearable devices in medical internet of things: scientific research and commercially available devices. Healthcare informatics research, 23(1), 4-15. doi:10.4258/hir.2017.23.1.4
  14. Huang, C. T., Shen, C. L., Tang, C. F., & Chang. S. H. (2008). A wearable yarn-based piezo-resistive sensor, Sensors and Actuators A: Physical, 141(2), 396-403, doi:10.1016/j.sna.2007.10.069
  15. Jang, E. J., Jo, H. S., & Cho, G. S. (2018). Development of Nanoweb based PEDOT:PSS electrode prototype for active senior's EMG measuring smart clothing. Fall Conference of the Korean Society for Emotional Performance, Korea, pp. 37-38.
  16. Ko, J. H., Jee, S. H., Lee, J. H., & Kim. S. H. (2018). High durability conductive textile using MWCNT for motion sensing. Sensors and Actuators A, 274, 50-56. doi:10.1016/j.sna.2018.02.037
  17. Kim, J. D., Kim, K. J., Chung, G. S., Lee, J. H., Ahn, J. H., & Lee, S. G. (2010). The mobile health-care garment system for measurement of cardiorespiratory signal. The KIPS Transactions - PartA, 17A(3), 145-152. doi:10.3745/KIPSTA.2010.17A.3.145
  18. Kim, C. M., Kang, K. H., & Kim, E. S. (2015). Active spinning training system using complex biosignals. Journal of the Korean Contents Association, 15(7), 591-600. doi:10.5392/JKCA.2015.15.07.591
  19. Korea Health Promotion and Development Institute. (2020). Current status and development direction of public digital health care services. Seoul: Korea Health Promotion Institute
  20. Kim, S., & Ryoo, K. (2019). Research on information & communication work business in response to the Fourth Industrial Revolution. The Journal of the Convergence on Culture Technology, 5(1), 139-146. doi:10.17703/JCCT.2019.5.1.139
  21. Kang, K. Y., & Jin, H. J. (2008). Transactions - The study on the perceived risk and product innovativeness evaluation of smart clothing. Fashion & Textile Research Journal, 10(5), 618-624.
  22. Lee, S. M., & Lee, D. (2020). Healthcare wearable devices - An analysis of key factors for continuous use intention. Service Business, 14(4), 503-531. doi:10.1007/s11628-020-00428-3
  23. Lee, J. K., Chu, H. J., & Kim, H. Y. (2021). Product case study of smart clothing - Focusing on smart clothing patent application technology. Journal of the Korean Society of Clothing and Textiles, 45(1), 28-45. doi:10.5850/JKSCT.2021.45.1.28
  24. Lee, J. K., Lee, S., Kim, J. G., Min, B. K., Kim, Y. I., Lee, K. I., An, K. H., & John, P. (2014). Structure of single-wall carbon nanotubes - A graphene helix. Small, 10(16), 3283-3290. doi:10.1002/smll.201400884
  25. Lee, J. E. (2020). Development of strain sensor-based smart step compression leggings. Unpublished doctoral dissertation, Chonnam National University, Gwangju
  26. Ministry of Trade, Industry & Energy. (2021). 2020 Textile Industry Digital Professional Talent Cultivation Plan, Textile Industry Digital Professional Talent Cultivation Plan Final Report. Sejong : Government Printing Office.
  27. 'OMbra'. (2011). Smart Clothing Lab. Retrieved April 8, 2022, from https://smartclothinglab.com/brands/omsignal/
  28. Paradiso, R., Loriga, G., & Taccini, N. (2005). A wearable health care system based on knitted integrated sensors. IEEE Transactions on Information Technology in Biomedicine, 9(3), 337-344, doi:10.1109/TITB.2005.854512
  29. Park, S. Y. & Lee, J. H. (2018). Development of design prototype of smart fitness wear for self-training based on qualitative analysis of consumer demand. Journal fo the Korean Society Design Culture, 24(2), 257-267. doi:10.18208/ksdc.2018.24.2.257
  30. Roh, J. S. (2016). Wearable textile strain sensors. Fashion & Textile Research Journal, 18(6), 733-745. doi:10.5805/SFTI.2016.18.6.733
  31. Research and Development Special Zone Promotion Foundation. (2020). Smart clothing market. Seoul: Author.
  32. 'Sensoria® smart T-shirt'. (2012). Sensoria. Retrieved April 8, 2022, from https://www.sensoriafitness.com/
  33. 'Siren Smart Socks'. (2016). Siren. Retrieved April 12, 2022, from https://www.siren.care/certified-providers/
  34. Song, H. Y., Kim, J. E., & Kim, T. N. (2020). Artificial intelligence and health communication. Journal of Communication Research, 57(3), 196-238. doi:10.22174/jcr.2020.57.3.196
  35. Small and Medium Business Technology Information Promotion Agency. (2021). SME Strategic Technology Roadmap_Bio Health 2020-2022. Sejong: Jinhan M&B
  36. Shim, B. S., Chen, W., Doty, C., Xu, C., & Kotov, N. A. (2008). Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Letters, 8(12), 4151-4157. doi:10.1021/nl801495p
  37. 'SUPA Powered Sports Bra'. (2016). Movesense. Retrieved April 12, 2022, from https://www.movesense.com/showcase/supa/
  38. Technology development trends and application cases and industry analysis for each major application field of smart textiles. (2021). Seoul: Good Information.
  39. Tsai, T., You, K., Ma, Y., & Chao, Y. (2014). CGU smart clothes platform - Development of a gateway device and real-time mobile display. IEEE-EMBS Diagnostics and Health Informatics (BHI), pp. 17-20. doi:10.1109/BHI.2014.6864293.
  40. 'Nadi X'. (2016). Wearable X. Retrieved April 4, 2022, from https://www.wearablex.com/pages/how-it-works
  41. Wang, C., Xia, K., Wang, H., Liang, X., Yin, Z., & Zhang, Y. (2018), Advanced carbon for flexible and wearable electronics. Advanced Materials, 31(9), 1801072. doi:10.1002/adma.201801072
  42. Wang, J., Lu, C., & Zhang, K. (2019). Textile-based strain sensor for human motion detection. Energy Environ. Mater, 3, 80-100. doi:10.1002/eem2.12041
  43. Yamada, T., Hayamizu, Y., & Yamamoto, Y. (2011). A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotech 6, 296-301. doi:10.1038/nnano.2011.36