DOI QR코드

DOI QR Code

Effect of Cavitation Amplitude on the Electrochemical Behavior of Super Austenitic Stainless Steels in Seawater Environment

해수 환경에서 슈퍼 오스테나이트 스테인리스강의 전기화학적 거동에 미치는 캐비테이션 진폭의 영향

  • Heo, Ho-Seong (Graduate school, Mokpo national maritime university) ;
  • Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university)
  • 허호성 (목포해양대학교 대학원) ;
  • 김성종 (목포해양대학교 기관시스템공학부)
  • Received : 2022.04.15
  • Accepted : 2022.04.19
  • Published : 2022.05.06

Abstract

The cavitation and potentiodynamic polarization experiments were conducted simultaneously to investigate the effect of cavitation amplitude on the super austenitic stainless steel (UNS N08367) electrochemical behavior in seawater. The results of the potentiodynamic polarization experiment under cavitation condition showed that the corrosion current density increased with cavitation amplitude increase. Above oxygen evolution potential, the current density in a static condition was the largest because the anodic dissolution reaction by intergranular corrosion was promoted. In the static condition, intergranular corrosion was mainly observed. However, damage caused by erosion was observed in the cavitation environment. The micro-jet generated by cavity collapse destroyed the corrosion product and promoted the repassivation. So, weight loss occurred the most in static conditions. After the experiment, wave patterns were formed on the surface due to the compressive residual stress caused by the impact pressure of the cavity. Surface hardness was improved by the water cavitation peening effect, and the hardness value was the highest at 30 ㎛ amplitude. UNS N08367 with excellent mechanical performance due to its high hardness showed that cavitation inhibited corrosion damage.

Keywords

Acknowledgement

이 논문은 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(선박 배출 대기오염물질동시저감 후처리시스템 실증 및 인증체계 구축).

References

  1. K. Li, M. Wu, X. Gu, K. F. Yuen, and Y. Xiaoa, Determinants of ship operators'options for compliance with IMO 2020, Transportation Research Part D: Transport and Environment, 86, 102459 (2020). Doi: https://doi.org/10.1016/j.trd.2020.102459
  2. N. R. Ammar and I. S. Seddiek, Eco-environmental analysis of ship emission control methods: Case study RORO cargo vessel, Ocean Engineering, 137, 166 (2017). Doi: https://doi.org/10.1016/j.oceaneng.2017.03.052
  3. L. Dahl, Corrosion in flue gas desulfurization plants and other low temperature equipment, Materials and Corrosion, 43, 292 (1992). Doi: https://doi.org/10.1002/maco.19920430610
  4. H. K. Hwang and S. J. Kim, Electrochemical Characteristics of Superaustenitic Stainless Steel with Temperature in Sea Water, Corrosion Science and Technology, 20, 391 (2021). Doi: https://doi.org/10.14773/cst.2021.20.6.391
  5. S. Ghosh and T. Ramgopal, Effect of Chloride and Phosphoric Acid on the Corrosion of Alloy C-276, UNS N08028, and UNS N08367, Corrosion, 61, 609 (2005). Doi: https://doi.org/10.5006/1.3278197
  6. J. D. Fritz and R. J. Gerlock, Chloride stress corrosion cracking resistance of 6% Mo stainless steel alloy (UNS N08367), I, 135, 93 (2001). Doi: https://doi.org/10.1016/S0011-9164(01)00142-4
  7. A. I. Karayan, E. M. Visuet, and H. Castaneda, Transpassivity characterization of the alloy UNS N08367 in a chloride-containing solution, Journal of Solid State Electrochemistry, 18, 3191 (2014). Doi: https://doi.org/10.1007/s10008-014-2566-0
  8. H. K. Hwang and S. J. Kim, Electrochemical Characteristics with Cavitation Amplitude Under Cavitation Erosion of 6061-T6 in Seawater, Corrosion Science and Technology, 19, 318 (2020). Doi: https://doi.org/10.14773/cst.2020.19.6.318
  9. D. M. G. Garcia, J. G. Anton, A. I. Munoz, E. B. Tamarit, Effect of cavitation on the corrosion behaviour of welded and non-welded duplex stainless steel in aqueous LiBr solutions, Corrosion Science, 48, 2380 (2006). Doi: https://doi.org/10.1016/j.corsci.2005.09.009
  10. R. M. F. Domene, E. B. Tamarit, D. M. G. Garcia, J. G. Anton, Repassivation of the damage generated by cavitation on UNS N08031 in a LiBr solution by means of electrochemical techniques and Confocal Laser Scanning Microscopy, Corrosion Science, 52, 3453 (2010). Doi: https://doi.org/10.1016/j.corsci.2010.06.018
  11. I. J. Jang, J. M. Jeon, K. T. Kim, Y. R. Yoo, and Y. S. Kim, Ultrasonic Cavitation Behavior and its Degradation Mechanism of Epoxy Coatings in 3.5 % NaCl at 15℃, Corrosion Science and Technology, 20, 26 (2021). Doi:https://doi.org/10.14773/cst.2021.20.1.26
  12. R. Sriram and D. Tromans, Pitting Corrosion of Duplex Stainless Steels, Corrosion, 45, 804 (1989). Doi: https://doi.org/10.5006/1.3584986
  13. R. Magnabosco and N. A. Falleiros, Pit Morphology and its Relation to Microstructure of 850 ℃ Aged Duplex Stainless Steel, Corrosion, 61, 130 (2005). Doi: https://doi.org/10.5006/1.3278167
  14. M. Sakashita and N. Sato, The effect of molybdate anion on the ion-selectivity of hydrous ferric oxide films in chloride solutions, Corrosion Science, 17, 473 (1977). Doi: https://doi.org/10.1016/0010-938X(77)90003-8
  15. Y. S. Kim, Synergistic Effect of Nitrogen and Molybdenum on Localized Corrosion of Stainless Steels, Corrosion Science and Technology, 9, 20 (2010). Doi: https://doi.org/10.14773/cst.2010.9.1.020
  16. H. Y. Chang, H. B. Park, Y. S. Kim, S. K. Ahn, and K. T. Kim, Compatibility Evaluation for Application of Lean Duplex Stainless Steels to Seawater Systems in Nuclear Power Plants, Materials Science Forum, 654-656, 382(2010). Doi: https://doi.org/10.4028/www.scientific.net/MSF.654-656.382
  17. M. Asaduzzaman, C. Mohammad, Mustafa, and M. Islam, Effects of concentration of sodium chloride solution on the pitting corrosion behavior of AISI-304L austenitic stainless steel, Chemical Industry and Chemical Engineering Quarterly, 17, 477 (2011). Doi: https://doi.org/10.2298/CICEQ110406032A
  18. S. J. Kim, K. Y. Hyun, S. K. Jang, Effects of water cavitation peening on electrochemical characteristic by using micro-droplet cell of Al-Mg alloy, Current Applied Physics, 12, 24 (2012). Doi: https://doi.org/10.1016/j.cap.2012.02.013
  19. S. J. Kim, S. J. Lee, S. O. Chong, Electrochemical characteristics under cavitation-erosion for STS 316L in seawater, Materials Research Bulletin, 58, 244 (2014). Doi: https://doi.org/10.1016/j.materresbull.2014.03.029
  20. S. J. Kim, M. S. Han, and M. S. KIM, Evaluation of Corrosion and the Anti-Cavitation Characteristics of Cu Alloy by Water Cavitation Peening, Corrosion Science and Technology, 11, 184 (2012). Doi: https://doi.org/10.14773/cst.2012.11.5.184
  21. O. Takakuwa, T. Ohmi, M. Nishikawa, A. T. Yokobori Jr and, H. Soyama, Suppression of fatigue crack propagation with hydrogen embrittlement in stainless steel by cavitation peening, Strength, Fracture and Complexity, 7, 79 (2011). Doi: https://doi.org/10.3233/SFC-2011-0126
  22. P. V. Rao, Evaluation of epoxy resins in flow cavitation erosion, Wear, 122, 77 (1988). Doi: https://doi.org/10.1016/0043-1648(88)90008-7
  23. A. Karimi and J. L. Martin, Cavitation erosion of materials, International Metal Reviews, 31, 1 (1986). Doi: https://doi.org/10.1179/imtr.1986.31.1.1
  24. B. N. Mordyuk, G. I. Prokopenko, M. A. Vasylyev, M. O. Iefimov, Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel, Materials Science and Engineering A, 458, 253 (2007). Doi: https://doi.org/10.1016/j.msea.2006.12.049
  25. S. F. Lee, J. F. Garcia, S. S. Yap, and D. Hui, Pitting corrosion induced on high-strength high carbon steel wire in high alkaline deaerated chloride electrolyte, Nanotechnology Reviews, 11, 973 (2022). Doi: https://doi.org/10.1515/ntrev-2022-0060
  26. R. Wang, Effect of ultrasound on initiation, growth and repassivation behaviours of pitting corrosion of SUS 304 steel in NaCl aqueous solution, Corrosion Engineering Science and Technology, 51, 201 (2016). Doi: https://doi.org/10.1179/1743278215Y.0000000046
  27. D. Sun, Y. Jiang, Y. Tang, Q. Xiang, C. Zhong, J. Liao, and J. Li, Pitting corrosion behavior of stainless steel in ultrasonic cell, Electrochimica Acta, 54, 1558 (2009). Doi: https://doi.org/10.1016/j.electacta.2008.09.056
  28. G. S. Vasyliev and O. M. Kuzmenko, Pitting Suppression of AISI 316 Stainless Steel Plates in Conditions of Ultrasonic Vibration, International Journal of Chemical Engineering, 2020, 1 (2020). Doi: https://doi.org/10.1155/2020/6697227