DOI QR코드

DOI QR Code

Penetration behavior of biopolymer aqueous solutions considering rheological properties

  • Ryou, Jae-Eun (Department of Civil Engineering, Chungbuk National University) ;
  • Jung, Jongwon (Department of Civil Engineering, Chungbuk National University)
  • 투고 : 2021.12.21
  • 심사 : 2022.03.03
  • 발행 : 2022.05.10

초록

The rheological and penetration characteristics of sodium alginate and xanthan gum aqueous solutions were analyzed for the development of biopolymer-based injection materials. The results of viscosity measurements for the rheological characteristics analysis show that all aqueous biopolymer solutions exhibit a tendency for shear-thinning, i.e., the apparent viscosity decreases as the shear rate increases. In addition, a regression analysis using several models (Power-law, Casson, Sisko, and Cross) was applied to the shear-thinning fluid analysis results, the highest accuracy was determined by applying the power-law model. The micromodel experiment for the penetration characteristics analysis determined that all biopolymer aqueous solutions show higher pore saturation than water, and that pore saturation tends to increase as the flow rate and concentration increases. When comparing the rheological and penetration characteristics of the biopolymer aqueous solution used in this study, the xanthan gum aqueous solution showed a fully developed shear-thinning tendency, unlike the sodium alginate aqueous solution. This tendency is considered to have the advantage of enhancement injectability and pore saturation.

키워드

과제정보

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government. (MSIT) (2020R1A2C1012352).

참고문헌

  1. Ahn, S., Ryou, J.E., Ahn, K., Lee, C., Lee, J.D. and Jung, J. (2020), "Evaluation of dynamic properties of sodium-alginate-reinforced soil using a resonant-column test", Materials, 14(11), 2743. https://doi.org/10.3390/ma14112743.
  2. Amelian, S., Rong, C.R., Kim, Y., Lindemann, M. and Bitar, L. (2022), "Weathering durability of biopolymerized shales and glacial tills", Geomech. Eng., 28(4), 375-384. https://doi.org/10.12989/gae.2022.28.4.375.
  3. Arab, M.G., Mousa, R.A., Gabr, A.R., Azam, A.M., El-Badawy, S.M. and Hassan, A.F. (2019), "Resilient behavior of sodium alginate-treated cohesive soils for pavement applications", J. Mater. Civ. Eng., 31(1), 04018361. https://doi.org/10.1061/(asce)mt.1943-5533.0002565.
  4. Ayeldeen, M.K., Negm, A.M. and El-sawwaf. M.A. (2016). "Evaluating the physical characteristics of biopolymer/soil mixtures", Arab J Geosci., 9, 371. https://doi.org/10.1007/s12517-016-2366-1.
  5. Bouazza, A., Gates, W.P. and Ranjith, P.G. (2009), "Hydraulic conductivity of biopolymer-treated silty sand", Geotechnique, 59(1), 71-72. https://doi.org/10.1680/geot.2007.00137.
  6. Butler, M. (2016), Xanthan gum: applications and research studies. Nova Science Inc, New York, NY, USA.
  7. Cao, S., Bate, B., Hu, J. and Jung, J. (2016a), "Engineering behavior and characteristics of water-soluble polymers: implication on soil remediation and enhanced oil recovery", Sustainability, 8(3), 205. https://doi.org/10.3390/su8030205.
  8. Cao, S.C., Dai, S. and Jung, J. (2016b), "Supercritical CO2 and brine displacement in geological carbon sequestration: Micromodel and pore network simulation studies", Int. J. Greenh. Gas Control., 44, 104-114. https://doi.org/10.1016/j.ijggc.2015.11.026.
  9. Casson, N. (1959), "A flow equation for pigment-oil suspensions of the printing ink type", (Ed., Mills, C.C.), Rheology of Disperse Systems. Pergamon Press, Oxford, 84-104.
  10. Chang, I. and Cho, G.C. (2014), "Geotechnical behavior of a beta1,3/1,6-glucan biopolymer-treated residual soil", Geomech. Eng., 7(6), 633-647. https://doi.org/10.12989/gae.2014.7.6.633.
  11. Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015a), "Effects of Xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
  12. Chang, I., Lee, M., Tran, A.T.P., Lee, S., Kwon, Y.M. Im, J. and Cho, G.C. (2020), "Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices", Transp. Geotech., 24, 100385. https://doi.org/10.1016/j.trgeo.2020.100385
  13. Chang, I., Prasidhi, A.K., Im, J. and Cho, G.C. (2015b), "Soil strengthening using thermo-gelation biopolymers", Constr. Build. Mater., 77, 430-438. https://doi.org/10.1016/j.conbuildmat.2014.12.116.
  14. Cheng, Z. and Geng, X. (2021), "Soil consistency and interparticle characteristics of various biopolymer types stabilization of clay", Geomech. Eng., 27(2), 103-113. https://doi.org/10.12989/gae.2021.27.2.103.
  15. Cross, M.M. (1979). "Relation between viscoelasticity and shear-thinning behaviour in liquids", Rheol Acta, 18(5), 609-614. https://doi.org/10.1007/bf01520357.
  16. Fatehi, H., Abtahi, S.M., Hashemolhosseini, H. and Hejazi, S.M. (2018), "A novel study on using protein based biopolymers in soil strengthening", Constr. Build. Mater., 167, 813-821. https://doi.org/10.1016/j.conbuildmat.2018.02.028.
  17. Ham, S.-M., Chang, I., Noh, D.H., Kwon, T.H. and Muhunthan, B. (2018), "Improvement of Surface Erosion Resistance of Sand by Microbial Biopolymer Formation", J. Geotech. Geoenviron. Eng., 144(7), 06018004. https://doi.org/10.1061/(asce)gt.1943-5606.0001900.
  18. He, Z., Li, Q., Wang, J., Yin, N., Jiang, S. and Kang, M. (2016), "Effect of silane treatment on the mechanical properties of polyurethane/water glass grouting materials", Constr. Build. Mater., 116, 110-120. https://doi.org/10.1016/j.conbuildmat.2016.04.112.
  19. Hwang, S.P., Yoo, W.K. and Kim, C.Y. (2018), "Experimental Study on Characteristics of Penetration into Microcrack Depending on Viscosity", Int. J. Struct. Civ. Eng. Res., 7(3), 227-232. https://doi.org/10.18178/ijscer.7.3.227-232.
  20. Jang, J., Lee, J. and Jung, J. (2017), "Characterization of Agar for Soil Remediation", J. Korean Soc. Hazard Mitig., 17(6), 351-358. https://doi.org/10.9798/KOSHAM.2017.17.6.351.
  21. Jeoung, J.H., Hwang, S.P., Lee, J.H. and Lee, T.H. (2016), "The study on evaluation of injection performance in micro crack depending on viscosity of grouting material", J. Korean Soc. Hazard Mitig., 16(5), 239-245. https://doi.org/10.7843/kgs.2017.33.9.23.
  22. Jung, J. and Ahn, J. (2014), "Characteristerization of biopolymer solution used for soil remediation and petroleum production", J. Korean Soc. Hazard Mitig., 14(5), 109-114. https://doi.org/10.9798/KOSHAM.2014.14.5.109.
  23. Jung, J., Jang, J. and Ahn, J. (2016), "Characterization of a polyacrylamide solution used for remediation of petroleum contaminated soils", Materials, 9(1), 16. https://doi.org/10.3390/ma9010016.
  24. Karol. R.H. (2003), Chemical Grouting and Soil Stabilization, (1st Edition), CRC Press, Boca Raton, FL, USA.
  25. Ko, D. and Kang, J. (2020), "Biopolymer-reinforced levee for breach development retardation and enhanced erosion control", Water, 12(4), 1070. https://doi.org/10.3390/w12041070.
  26. Kumar, S.A. and Sujatha, E.R. (2021), "Experimental investigation on the shear strength and deformation behaviour of xanthan gum and guar gum treated clayey sand", Geomech. Eng., 26(2), 101-115. https://doi.org/10.12989/gae.2021.26.2.101.
  27. Lee, M., Im, J., Chang, I. and Cho, G.C. (2021), "Evaluation of Injection capabilities of a biopolymer based grout material", Geomech. Eng., 25(1), 31-40. https://doi.org/10.12989/gae.2021.25.1.031.
  28. Lee, S., Chang, I., Chung, M.K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of Xanthan Gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831.
  29. Lenormand, R. and Zarcone, C. (1989), "Capillary fingering Percolation and fractal dimension", Transp. Porous Media, 4, 599-612. https://doi.org/10.1007/BF00223630.
  30. Ostwald, W. (1929), "uber die rechnerische Darstellung des Strukturgebietes der Viskositat", Kolloid-Z., 47(2), 176-187. https://doi.org/10.1007/BF01496959.
  31. Park, S.S., Woo, S.W., Jeong, S.W. and Lee, D.E. (2020), "Durability and strength characteristics of casein-cemented sand with sslag", Materials, 13(14), 3182. https://doi.org/10.3390/ma13143182.
  32. Pathak, T.S., Kim, J.S., Lee, S.J., Baek, D.J. and Paeng, K.J. (2008), "Preparation of alginic acid and metal alginate from algae and their comparative study", J. Polym. Environ., 16, 198-204. https://doi.org/10.1007/s10924-008-0097-4.
  33. Sisko, A.W. (1958), "The flow of lubricating greases", Ind. Eng. Chem., 50(12), 1789-1792. https://doi.org/10.1021/ie50588a042.
  34. Sochi, T. (2010). "Pore-scale modeling of non-Newtonian flow in porous media", Ph.D. Dissertation, Imperial College London, London.
  35. Soldo, A. and Miletic, M. (2019). "Study on shear strength of Xanthan gum-amended soil", Sustainability, 11(21), 6142. https://doi.org/10.3390/su11216142.
  36. Spariharjaona, A., Eswaran, P., Joel, B.A. and Rajalingam, S. (2019), "Static dissolution-induced 3D pore network modification and its impact on critical pore attributes of carbonate rocks", Petroleum Exploration and Development, 46(2), 374-383. https://doi.org/10.1016/S1876-3804(19)60017-0.
  37. Taytak, B., Pulat, H.F. and Yukselen-Aksoy, Y. (2012). "Improvement of engineering properties of soils by biopolymer additives", Proceedings of the 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, North Cyprus, Turkey, June.
  38. Wiszniewski, M. and Cabalar, A.F. (2014), "Hydraulic conductivity of a biopolymer treated sand", Proceedings of the 3rd Geotechnical International Conference, Shanghai, China, May.
  39. Zhang, Q., Hu, X.M., Wu, M.Y., Zhao, Y.Y. and Yu, C. (2018), "Effects of different catalysts on the structure and properties of polyurethane/water glass grouting materials", J. Appl. Polym. Sci., 135(27), 46460. https://doi.org/10.1002/app.46460.
  40. Zhou, F., Sun, W., Shao, J., Kong, L. and Geng, X. (2020). "Experimental study on nano silica modified cement base grouting reinforcement materials", Geomech. Eng., 20(1), 67-73. https://doi.org/10.12989/gae.2020.20.1.067.