과제정보
This research was supported by the Basic Science Research Program through the National research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1A02085845).
참고문헌
- Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A. and Arshad, H. (2018), "State-of-the-art in artificial neural network applications: A survey", Heliyon, 4(11), e00938. https://doi.org/10.1016/j.heliyon.2018.e00938.
- Abu Alfeilat, H.A., Hassanat, A.B., Lasassmeh, O., Tarawneh, A.S., Alhasanat, M.B., Eyal Salman, H.S. and Prasath, V.S. (2019), "Effects of distance measure choice on k-nearest neighbor classifier performance: a review", Big data, 7(4), 221-248. https://doi.org/10.1089/big.2018.0175.
- Rezaei, A.H., Shirzehhagh, M. and Golpasand, M.R.B. (2019), "EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements", Geomech. Eng., 19(2), 153-165. https://doi.org/10.12989/gae.2019.19.2.153.
- Bruland, A. (1988), "Hard rock tunnel boring", Ph.D. Dissertation, Norwegian University of Science and Technology, Trondheim
- Eftekhari, A. and Aalianvari, A. (2019), "An overview of several techniques employed to overcome squeezing in mechanized tunnels; A case study", Geomech. Eng., 18(2), 215-224. https://doi.org/10.12989/gae.2019.18.2.215.
- Farrokh, E. (2021), "Primary and secondary tools' life evaluation for soft ground TBMs", Bull. Eng. Geol. Environ., 80(6), 4909-4927. https://doi.org/10.1007/s10064-021-2223-4
- Farrokh, E. (2021), "Cutter change time and cutter consumption for rock TBMs", Tunn. Undergr. Sp. Tech., 114, 104000. https://doi.org/10.1016/j.tust.2021.104000.
- Frenzel, C., Kasling, H. and Thuro, K. (2008), "Factors influencing disc cutter wear", Geomechanik und Tunnelbau, 1(1), 55-60. https://doi.org/10.1002/geot.200800006.
- Gehring, K. (1995), "Leistungs- und Verschleissprognose im maschinellen Tunnelbau", Felsbau., 13(6), 439-448.
- Jeong, H., Zhang, N. and Jeon, S. (2018), "Review of technical issues for shield TBM tunneling in difficult grounds", J. Korean Tunn. Undergr. Sp. Assoc.., 28(1), 1-24. https://doi.org/10.7474/TUS.2018.28.1.001.
- Jung, H., Knag, H., Choi, J. and Chun, B. (2010), "Improvement plan of excavation performance based on Shield TBM performance prediction models and field data", J. Korean Geo-Environ. Soc., 11(2), 43-52. G704-SER000001652.2010.11.2.005.
- Kim, D., Pham, K., Park, S., Oh, J.Y. and Choi, H. (2020) "Determination of effective parameters on surface settlement during shield TBM", Geomech. Eng., 21(2), 153-164. https://doi.org/10.12989/gae.2020.21.2.153.
- Kim, K., Oh. J., Lee. H., Kim, D. and Choi, H. (2018), "Critical face pressure and backfill pressure in shield TBM tunneling on soft ground", Geomech. Eng., 15(3), 823-831. https://doi.org/10.12989/gae.2018.15.3.823.
- Kim, K.Y., Jo, S.A., Rye, H.H. and Cho, G.C. (2020), "Prediction of TBM performance based on specific energy", Geomech. Eng., 22(6), 489-496. https://doi.org/10.12989/gae.2020.22.6.489.
- Kovari, K. and Ramoni, M. (2006), "Urban tunnelling in soft ground using TMBs", International Conference and Exhibition on Tunnelling and Trenchless Technology: Tunnelling and trenchless technology in the 21st century. Subang Jaya-Selangor Darul Ehsan, January
- La, Y.S., Kim, M.I. and Kim, B. (2019), "Development of penetration rate prediction model using Shield TBM excavation data", J. Korean Tunn. Undergr. Sp. Assoc., 21(4), 519-534. https://doi.org/10.9711/KTAJ.2019.21.4.519
- Macias, F.J. (2016), "Hard rock tunnel boring: performance predictions and cutter life assessments", Ph.D. Dissertation, Norwegian University of Science and Technology, Trondheim
- Ma, H., Yin, L., Gong, Q. and Wang, J. (2015), "TBM tunneling in mixed-face ground: Problems and solutions", Int. J. Min. Sci. Tech., 25(4), 641-647. https://doi.org/10.1016/j.ijmst.2015.05.019.
- Patel, H.H. and Prajapati, P. (2018), "Study and analysis of decision tree based classification algorithms", Int. J. Comput. Sci. Eng., 6(10), 74-78.
- Rostami, J. (1997), "Development of a force estimation model for rock fragmentation with disc cutters through theoretical modeling and physical measurement of crushed zone pressure", Ph.D. Dissertation, Colorado School of Mines, Colorado
- Schlkopf, B. and Smola, A.J. (2001) "Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond", MIT Press, Cambridge, UK
- Vapnik, V. and Chervonenkis, A. (1974), "Theory of Pattern Recognition [in Russian]", Statistical Learning Problems, Nauka, Moscow, Russia
- Vapnik, V.N. (1995), "The Nature of Statistical Learning Theory", Springer, New York, NY, USA