Acknowledgement
This research was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (2019R1A2C2086647 and 2020R1A6A1A03045059).
References
- Anderson, D.M. and Tice, A.R. (1972), "Predicting unfrozen water contents in frozen soils from surface area measurements", Highway Res. Record, 393(2), 12-18. https://doi.org/10.1016/0022-4898(73)90017-7.
- Arenson, L.U., Johansen, M.M. and Springman, S.M. (2004), "Effects of volumetric ice content and strain rate on shear strength under triaxial conditions for frozen soil samples", Permafrost Periglacial Processes, 15(3), 261-271. https://doi.org/10.1002/ppp.498.
- Aukenthaler, M. (2016), "The Frozen & Unfrozen Barcelona Basic Model", M.S. Dissertation, Delft University of Technology.
- Burt, T.P. and Williams, P.J. (1976), "Hydraulic conductivity in frozen soils", Earth Surf. Processes, 1(4), 349-360. https://doi.org/10.1002/esp.3290010404.
- Choi, C. (2011), "A study on the effect of pile surface roughness on adfreeze bond strength", J. Korean GEO Environ. Soc., 12(12), 79-88.
- Di Donna, A., Ferrari, A. and Laloui, L. (2016), "Experimental investigations of the soil-concrete interface: physical mechanisms, cyclic mobilization, and behaviour at different temperatures", Can. Geotech. J., 53(4), 659-672. https://doi.org/10.1139/cgj-2015-0294@cgj-wgge.issue01.
- He, P., Mu, Y., Yang, Z., Ma, W., Dong, J. and Huang, Y. (2020), "Freeze-thaw cycling impact on the shear behavior of frozen soil-concrete interface", Cold Regions Sci. Tech., 173, 103024. https://doi.org/10.1016/j.coldregions.2020.103024.
- Jaeger, C. (1979), Rock Mechanics and Engineering, (2nd Edition), Cambridge University Press.
- Jin, H., Lee, J., Zhuang, L. and Byu, B.H. (2020), "Laboratory investigation of unconfined compression behavior of ice and frozen soil mixtures", Geomech. Eng., 22(3), 219-226. https://doi.org/10.12989/gae.2020.22.3.219.
- Ko, S.G. and Choi, C.H. (2011), "Experimental study on adfreeze bond strength between frozen sand and aluminium with varying freezing temperature and vertical confining pressure", J. Korean Geotech. Soc., 27(9), 67-76. https://doi.org/10.7843/kgs.2011.27.9.067.
- Ladanyi, B. (1995), "Frozen soil-structure interfaces", Studies Appl. Mech., 42, 3-33. https://doi.org/10.1016/S0922-5382(06)80004-8.
- Lee, J., Kim, Y. and Choi, C. (2013), "A study for adfreeze bond strength developed between weathered granite soils and aluminum plate", J. Korean Geoenviron. Soc., 14(12), 23-30. https://doi.org/10.14481/jkges.2013.14.12.023.
- Li, L.R., Deng, J.H., Liu, J.F., Zheng, J., Chen, T. and Deng, C.F. (2017), "A new understanding of punch-through shear testing", Geotechnique Lett., 7(2), 129-135. https://doi.org/10.1680/jgele.16.00123.
- Liu, J., Lv, P., Cui, Y. and Liu, J. (2014), "Experimental study on direct shear behavior of frozen soil-concrete interface", Cold Regions Sci. Technol., 104, 1-6. https://doi.org/10.1016/j.coldregions.2014.04.007.
- Nakazawa, N., Saeki, H., Ono, T., Takeuchi, T. and Kanie, S. (1988), "Ice forces due to changes in water level and adfreeze bond strength between sea ice and various materials", J. Offshore Mech. Arct. Eng., 110(1), 74-80. https://doi.org/10.1115/1.3257127.
- Parameswaran, V.R. (1978), "Adfreezing strength of frozen sand to model piles", Can. Geotech. J., 15(4), 494-500. https://doi.org/10.1139/t78-053.
- Peng-Fei, H.E., Yan-Hu, M.U., Wei, M.A., Huang, Y.T. and Jian-Hua, D.O.N.G. (2021), "Testing and modeling of frozen clay-concrete interface behavior based on large-scale shear tests", Adv. Climate Change Res., 12(1), 83-94. https://doi.org/10.1016/j.accre.2020.09.010.
- Quanbin, S., Ping, Y. and Guoliang, W. (2018), "Experimental research on adfreezing strengthsat the interface between frozen fine sand and structures", Scientia Iranica, 25(2), 663-674. https://doi.org/10.24200/SCI.2017.20005.
- Sayles, F.H. and Carbee, D.L. (1981), "Strength of frozen silt as a function of ice content and dry unit weight", Eng. Geol., 18(1-4), 55-66. https://doi.org/10.1016/0013-7952(81)90046-6.
- Sepaskhah, A.R., Tabarzad, A. and Fooladmand, H.R. (2010), "Physical and empirical models for estimation of specific surface area of soils", Arch. Agronomy Soil Sci., 56(3), 325-335. https://doi.org/10.1080/03650340903099676.
- Shirazi, M.A. and Boersma, L. (1984), "A unifying quantitative analysis of soil texture", Soil Sci. Soc. Am. J., 48(1), 142-147. https://doi.org/10.2136/sssaj1984.03615995004800010026x.
- Tang, L., Du, Y., Liu, L., Jin, L., Yang, L. and Li, G. (2020), "Effect mechanism of unfrozen water on the frozen soil-structure interface during the freezing-thawing process", Geomech. Eng., 22(3), 245-254. https://doi.org/10.12989/gae.2020.22.3.245.
- Terashima, T. (1997), "Comparative experiments on various adfreeze bond strength tests between ice and materials", WIT T. Eng. Sci., 14, 207-216. https://doi.org/10.2495/CON970211.
- Thomas, H.R., Cleall, P., Li, Y.C., Harris, C. and Kern-Luetschg, M. (2009), "Modelling of cryogenic processes in permafrost and seasonally frozen soils", Geotechnique, 59(3), 173-184. https://doi.org/10.1680/geot.2009.59.3.173.
- Uesugi, M. and Kishida, H. (1986), "Frictional resistance at yield between dry sand and mild steel", Soil. Found., 26(4), 139-149. https://doi.org/10.3208/sandf1972.26.4_139.
- Wang, D., Wang, T., Xu, D. and Zhou, G. (2020), "Estimation of spatial autocorrelation variations of uncertain geotechnical properties for the frozen ground", Geomech. Eng., 22(4), 339-348. https://doi.org/10.12989/gae.2020.22.4.339.
- Wang, S., Wang, Q., Qi, J. and Liu, F. (2018), "Experimental study on freezing point of saline soft clay after freeze-thaw cycling", Geomech. Eng., 15(4), 997-1004. https://doi.org/10.12989/gae.2018.15.4.997.
- Wang, T.L., Wang, H.H., Hu, T.F. and Song, H.F. (2019), "Experimental study on the mechanical properties of soil-structure interface under frozen conditions using an improved roughness algorithm", Cold Regions Sci. Tech., 158, 62-68. https://doi.org/10.1016/j.coldregions.2018.10.015.
- Wang, T., Zhou, G., Wang. J. and Wang, D. (2020), "Impact of spatial variability of geotechnical properties on uncertain settlement of frozen soil foundation around an oil pipeline", Geomech. Eng., 20(1), 19-28. https://doi.org/10.12989/gae.2020.20.1.019.
- Weaver, J.S. and Morgenstern, N.R. (1981), "Pile design in permafrost", Can. Geotech. J., 18(3), 357-370. https://doi.org/10.1139/t81-043.
- Wu, H., Kemeny, J. and Wu, S. (2017), "Experimental and numerical investigation of the punch-through shear test for mode II fracture toughness determination in rock", Eng. Fract. Mech., 184, 59-74. https://doi.org/10.1016/j.engfracmech.2017.08.006.
- Xu, Y., Yao, W., Xia, K. and Ghaffari, H.O. (2019), "Experimental study of the dynamic shear response of rocks using a modified punch shear method", Rock Mech. Rock Eng., 52(8), 2523-2534. https://doi.org/10.1007/s00603-019-1744-x.
- Zhang, Y., Cheng, Z. and Lv, H. (2019), "Study on failure and subsidence law of frozen soil layer in coal mine influenced by physical conditions", Geomech. Eng., 18(1), 97-109. https://doi.org/10.12989/gae.2019.18.1.097.
- Zhu, T. and Li, Y. (2021), "Impacts of Disk Rock Sample Geometric Dimensions on Shear Fracture Behavior in a Punch Shear Test", Comput. Model. Eng. Sci., 126(2), 455-475. https://doi.org/10.32604/cmes.2021.014284.
- Zhou, Z., Yang, H., Xing, K. and Gao, W. (2018), "Prediction models of the shear modulus of normal or frozen soil-rock mixtures", Geomech. Eng., 15(2), 783-791. https://doi.org/10.12989/gae.2018.15.2.783.