DOI QR코드

DOI QR Code

전이금속 옥살산염 기반 알칼라인 수전해 전극 응용기술 동향

Transition-metal oxalate-based electrodes for alkaline water electrolysis : a review

  • 하재윤 (인하대학교 화학.화학공학 융합학과) ;
  • 김용태 (인하대학교 화학.화학공학 융합학과) ;
  • 최진섭 (인하대학교 화학.화학공학 융합학과)
  • Ha, Jaeyun (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Kim, Yong-Tae (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
  • 투고 : 2022.04.15
  • 심사 : 2022.04.25
  • 발행 : 2022.04.30

초록

As a low-cost and high-efficiency electrocatalysts with high performance and stability become a key challenge in the development of the practical use of water electrolysis, there is an intense interest in transition-metal oxalate-based materials. Transition-metal oxalate-based catalysts with excellent electrochemical performances have been widely applied in water electrolysis due to its low-cost and ease of synthesis. This review provides a useful summary on the development of transition-metal oxalate as potential catalysts for water electrolysis with a focus on the structural and compositional alteration, role of oxalate anion, and enhanced electrochemical performances.

키워드

참고문헌

  1. E. Haghi, K. Raahemifar, M. Fowler, Investigating the effect of renewable energy incentives and hydrogen storage on advantages of stakeholders in a microgrid, Energy Policy, 113 (2018) 206-222. https://doi.org/10.1016/j.enpol.2017.10.045
  2. T. Kawawaki, Y. Kataoka, S. Ozaki, M. Kawachi, M. Hirata, Y. Negishi, Creation of active water-splitting photocatalysts by controlling cocatalysts using atomically precise metal nanoclusters, Chem. Comm., 57 (2021) 417-440. https://doi.org/10.1039/D0CC06809H
  3. J. E. Lee, K. J. Jeon, P. L. Show, S. C. Jung, Y. J. Choi, G. H. Rhee, K. Y. A. Lin, Y. K. Park, Mini review on H2 production from electrochemical water splitting according to special nanostructured morphology of electrocatalysts, Fuel, 308 (2022) 122048. https://doi.org/10.1016/j.fuel.2021.122048
  4. T. Jiangnan, J. Jing, L. Yang, M. Xiong, Development status and trend of green hydrogen energy technology, Distributed Energy Resources, 6 (2021) 8-13.
  5. Y. Zhou, R. Li, Z. Lv, J. Liu, H. Zhou, C. Xu, Green hydrogen: A promising way to the carbon-free society, Chin. J. Chem. Eng., (2022) 2-13.
  6. M. Kim, J. Ha, Y. T. Kim, J. Choi, Technology trends in stainless steel for water splitting application, J. Korean Electrochem. Soc., 24 (2021) 13-27. https://doi.org/10.5229/JKES.2021.24.2.13
  7. J. Zhang, Q. Zhang, X. Feng, Support and interface effects in water-splitting electrocatalysts, Adv. Mater., 31 (2019) 1808167. https://doi.org/10.1002/adma.201808167
  8. C. Li, J. B. Baek, Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction, ACS Omega, 5 (2019) 31-40. https://doi.org/10.1021/acsomega.9b03550
  9. H. Sun, W. Jung, Recent advances in doped ruthenium oxides as high-efficiency electrocatalysts for the oxygen evolution reaction, J. Mater. Chem. A, (2021) 15506-15521.
  10. Y. Z. Wang, M. Yang, Y. M. Ding, N. W. Li, L. Yu, Recent advances in complex hollow electrocatalysts for water splitting, Adv. Funct. Mater., 32 (2022) 2108681. https://doi.org/10.1002/adfm.202108681
  11. B. Zhang, Y. Zheng, T. Ma, C. Yang, Y. Peng, Z. Zhou, M. Zhou, S. Li, Y. Wang, C. Cheng, Designing MOF nanoarchitectures for electrochemical water splitting, Adv. Mater., 33 (2021) 2006042. https://doi.org/10.1002/adma.202006042
  12. F. Wang, T. A. Shifa, X. Zhan, Y. Huang, K. Liu, Z. Cheng, C. Jiang, J. He, Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting, Nanoscale, 7 (2015) 19764-19788. https://doi.org/10.1039/C5NR06718A
  13. J. Wang, X. Yue, Y. Yang, S. Sirisomboonchai, P. Wang, X. Ma, A. Abudula, G. Guan, Earth-abundant transition-metalbased bifunctional catalysts for overall electrochemical water splitting: A review, J. Alloys Compd., 819 (2020) 153346. https://doi.org/10.1016/j.jallcom.2019.153346
  14. M. Wang, L. Zhang, Y. He, H. Zhu, Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting, J. Mater. Chem. A, 9 (2021) 5320-5363. https://doi.org/10.1039/D0TA12152E
  15. H. R. Devi, R. Chikkegowda, D. Rangappa, A. K. Yadav, Z. Chen, K. K. Nanda, Trimetallic oxide-hydroxide porous nanosheets for efficient water oxidation, Chem. Eng. J., 435 (2022) 135019. https://doi.org/10.1016/j.cej.2022.135019
  16. J. S. Kim, B. Kim, H. Kim, K. Kang, Recent progress on multimetal oxide catalysts for the oxygen evolution reaction, Adv. Energy Mater., 8 (2018) 1702774. https://doi.org/10.1002/aenm.201702774
  17. N. Li, Q. Li, X. Guo, M. Yuan, H. Pang, Controllable synthesis of oxalate and oxalate-derived nanomaterials for applications in electrochemistry, Chem. Eng. J., 372 (2019) 551-571. https://doi.org/10.1016/j.cej.2019.04.127
  18. A. Verma, R. Kore, D.R. Corbin, M.B. Shiflett, Metal recovery using oxalate chemistry: a technical review, Ind. Eng. Chem. Res., 58 (2019) 15381-15393. https://doi.org/10.1021/acs.iecr.9b02598
  19. J. Ha, Y. T. Kim, J. Choi, In situ precipitation-induced growth of leaf-like CuO nanostructures on Cu-Ni alloys for binder-free anodes in Li-Ion batteries, ChemSusChem, 13 (2020) 419-425. https://doi.org/10.1002/cssc.201902393
  20. S. J. Kim, Y. T. Kim, J. Choi, Facile and rapid synthesis of zinc oxalate nanowires and their decomposition into zinc oxide nanowires, J. Cryst. Growth, 312 (2010) 2946-2951. https://doi.org/10.1016/j.jcrysgro.2010.06.029
  21. Y. Duan, Z. Huang, X. Dong, J. Ren, L. Lin, S. Wu, R. Jia, X. Xu, A comprehensive evaluation of Co, Ni, Cu and Zn doped manganese oxalate for lithium storage, J. Solid State Chem., 306 (2022) 122728. https://doi.org/10.1016/j.jssc.2021.122728
  22. Y. U. Park, J. Kim, H. Gwon, D. H. Seo, S. W. Kim, K. Kang, Synthesis of multicomponent olivine by a novel mixed transition metal oxalate coprecipitation method and electrochemical characterization, Chem. Mater., 22 (2010) 2573-2581. https://doi.org/10.1021/cm903616d
  23. J. Ha, M. Kim, Y. T. Kim, J. Choi, Ni0.67Fe0.33 Hydroxide incorporated with oxalate for highly efficient oxygen evolution reaction, ACS Appl. Mater. Interfaces, 13 (2021) 42870-42879. https://doi.org/10.1021/acsami.1c12155
  24. X. Gao, D. Chen, J. Qi, F. Li, Y. Song, W. Zhang, R. Cao, NiFe oxalate nanomesh array with homogenous doping of Fe for electrocatalytic water oxidation, Small, 15 (2019) 1904579. https://doi.org/10.1002/smll.201904579
  25. Y. Wei, X. Ren, H. Ma, X. Sun, Y. Zhang, X. Kuang, T. Yan, H. Ju, D. Wu, Q. Wei, CoC2O4· 2H2O derived Co3O4 nanorods array: a high-efficiency 1D electrocatalyst for alkaline oxygen evolution reaction, Chem. Comm., 54 (2018) 1533-1536. https://doi.org/10.1039/c7cc08423d
  26. J. W. Kim, J. K. Lee, D. Phihusut, Y. Yi, H. J. Lee, J. Lee, Self-organized one-dimensional cobalt compound nanostructures from CoC2O4 for superior oxygen evolution reaction, J. Phys. Chem. C, 117 (2013) 23712-23715. https://doi.org/10.1021/jp407156d
  27. X. Liu, J. Jiang, L. Ai, Non-precious cobalt oxalate microstructures as highly efficient electrocatalysts for oxygen evolution reaction, J. Mater. Chem. A, 3 (2015) 9707-9713. https://doi.org/10.1039/C5TA01012H
  28. D. Phihusut, J. D. Ocon, B. Jeong, J. W. Kim, J. K. Lee, J. Lee, Gently reduced graphene oxide incorporated into cobalt oxalate rods as bifunctional oxygen electrocatalyst, Electrochim. Acta, 140 (2014) 404-411. https://doi.org/10.1016/j.electacta.2014.05.050
  29. T. Kou, S. Wang, J. L. Hauser, M. Chen, S. R. Oliver, Y. Ye, J. Guo, Y. Li, Ni ofam-supported Fe-doped β-Ni (OH)2 nanosheets show ultralow overpotential for oxygen evolution reaction, ACS Energy Lett., 4 (2019) 622-628. https://doi.org/10.1021/acsenergylett.9b00047
  30. C. G. Morales-Guio, L. Liardet, X. Hu, Oxidatively electrodeposited thin-film transition metal (oxy) hydroxides as oxygen evolution catalysts, J. Am. Chem. Soc., 138 (2016) 8946-8957. https://doi.org/10.1021/jacs.6b05196
  31. A.T. Bell, Integrated Solar Fuel Generators, I. D. Sharp, H. A. Atwater, H.-J. Lewerenz, Eds., The Royal Society of Chemistry, Cambs., (2019) 79-116.
  32. X. Qiao, H. Kang, Y. Li, K. Cui, X. Jia, X. Wu, W. Qin, Novel FeNi-based nanowires network catalyst involving hydrophilic channel for oxygen evolution reaction, Small, (2022) 2106378.
  33. S. Ghosh, R. Jana, S. Ganguli, H.R. Inta, G. Tudu, H.V. Koppisetti, A. Datta, V. Mahalingam, Nickel-cobalt oxalate as an efficient non-precious electrocatalyst for an improved alkaline oxygen evolution reaction, Nanoscale Adv., 3 (2021) 3770-3779. https://doi.org/10.1039/D1NA00034A
  34. K. R. Park, J. E. Jeon, K. Kim, N. Oh, Y. H. Ko, J. Lee, S. H. Lee, J. H. Ryu, H. Han, S. Mhin, Synthesis of rod-type Co2.4Mn0.6O4 via oxalate precipitation for water splitting catalysts, Appl. Surf. Sci., 510 (2020) 145390. https://doi.org/10.1016/j.apsusc.2020.145390
  35. S. Yao, H. Wei, Y. Zhang, X. Zhang, Y. Wang, J. Liu, H.H. Tan, T. Xie, Y. Wu, Controlled growth of porous oxygendeficient NiCo2O4 nanobelts as highefficiency electrocatalysts for oxygen evolution reaction, Catal. Sci. Technol., 11 (2021) 264-271. https://doi.org/10.1039/D0CY01669A
  36. J. Qi, W. Zhang, R. Cao, Aligned cobaltbased Co@ CoOx nanostructures for efficient electrocatalytic water oxidation, Chem. Comm., 53 (2017) 9277-9280. https://doi.org/10.1039/C7CC04609J
  37. T. Kou, M. Chen, F. Wu, T.J. Smart, S. Wang, Y. Wu, Y. Zhang, S. Li, S. Lall, Z. Zhang, Carbon doping switching on the hydrogen adsorption activity of NiO for hydrogen evolution reaction, Nat. Commun., 11 (2020) 1-10. https://doi.org/10.1038/s41467-019-13993-7
  38. Z. Ye, Y. Qie, Z. Fan, Y. Liu, Z. Shi, H. Yang, Soft magnetic Fe5C2-Fe3C@C as an electrocatalyst for the hydrogen evolution reaction, Dalton Trans., 48 (2019) 4636-4642. https://doi.org/10.1039/c9dt00328b
  39. Y. Du, Z. Wang, H. Li, Y. Han, Y. Liu, Y. Yang, Y. Liu, L. Wang, Controllable synthesized CoP-MP (M= Fe, Mn) as efficient and stable electrocatalyst for hydrogen evolution reaction at all pH values, Int. J. Hydrog. Energy, 44 (2019) 19978-19985. https://doi.org/10.1016/j.ijhydene.2019.06.036
  40. K. K. Yadav, S. K. Guchhait, R. Wadhwa, M. Jha, Surface phosphorization of nickel oxalate nanosheets to stabilize ultrathin nickel cyclotetraphosphate nanosheets for efficient hydrogen generation, Mater. Res. Bull., 139 (2021) 111275. https://doi.org/10.1016/j.materresbull.2021.111275