DOI QR코드

DOI QR Code

서로 다른 증착 온도에서 성장된 BaWO4:Sm3+ 형광체 박막의 구조, 광학, 표면 형상의 특성

Structural, optical, and morphological properties of BaWO4:Sm3+ phosphor thin films grown at different deposition temperature

  • 조신호 (신라대학교 신소재공학과)
  • Cho, Shinho (Department of Materials Science and Engineering, Silla University)
  • 투고 : 2022.03.03
  • 심사 : 2022.03.15
  • 발행 : 2022.04.30

초록

The effects of the growth temperature on the structural, optical, and morphological properties of BaWO4:Sm3+ phosphor thin films were investigated. The BaWO4:Sm3+ thin films were grown on quartz substrates at several growth temperatures by radio-frequency magnetron sputtering. All the thin films crystallized in a tetragonal structure with a main BaWO4 (112) diffraction peak. The 830 nm-thick BaWO4:Sm3+ thin films grown at 300 ℃ exhibited numerous polygon-shaped particles. The excitation spectra of BaWO4:Sm3+ thin films consisted of a broad excitation band in the 200-270 nm with a maximum at 236 nm due to the O2--Sm3+ charge transfer and two small bands peaked at 402 and 463 nm, respectively. Under 236 nm excitation, the BaWO4:Sm3+ thin films showed an intense red emission peak at 641 nm due to the 4G5/26H9/2 transition of Sm3+, indicating that the Sm3+ ions occupied sites of non-inversion symmetry in the BaWO4 host lattice. The highest emission intensity was observed for the thin film grown at 300 ℃, with a 51.8% transmittance and 5.09 eV bandgap. The average optical transmittance in the wavelength range of 500-1100 nm was increased from 53.2% at 200 ℃ to 60.8% after growing at 400 ℃. These results suggest that 300 ℃ is the optimum temperature for growing redemitting BaWO4:Sm3+ thin films.

키워드

과제정보

이 논문은 2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2020R1I1A3A04037942).

참고문헌

  1. Z. Zhang, L. Liu, S. Sing, J. Zhang, D. Wang, A novel red-emitting phosphor Ca9Bi(PO4):Eu3+ for near ultraviolet white light-emitting diodes, Curr. Appl. Phys., 15 (2015) 248-252. https://doi.org/10.1016/j.cap.2014.12.014
  2. P. Du, J. S. Yu, Photoluminescence and cathodoluminescence properties of Eu3+ ions activated AMoO4 (A=Mg, Ca, Sr, Ba) phosphors, Mater. Res. Bull., 70 (2015) 553-558. https://doi.org/10.1016/j.materresbull.2015.05.022
  3. X. Wang, S. Zhao, Y. Zhang, G. Sheng, Controlled synthesis and tunable luminescence of NaYF4:Eu3+, J. Rare Earth., 28 (2010) 222-224. https://doi.org/10.1016/S1002-0721(10)60306-7
  4. A. Scarangella, F. Fabbri, R. Reitano, F. Rossi, F. Priolo, M. Miritello, Visible emission from bismuth-doped yttrium oxide thin films for lighting and display Applications, Sci. Rep., 7 (2017) 17325. https://doi.org/10.1038/s41598-017-17567-9
  5. A. S. Kumar, R. A. Kumar, R. Balasundaraprabhu, K. Senthil, S. R. Kumar, V. Gunasekaran, Influence of calcination temperature on the luminescent properties of Eu3+ doped CaAl4O7 phosphor prepared by pechini method, Spectrochim. Acta A, 134 (2015) 283-287. https://doi.org/10.1016/j.saa.2014.06.023
  6. R. Krishnan, H. C. Swart, J. Thirumalai, P. Kumar, Depth profiling and photometric characteristics of Pr3+ doped BaMoO4 thin phosphor films grown using (266 nm Nd-YAG laser) pulsed laser deposition, Appl. Surf. Sci., 488 (2019) 783-790. https://doi.org/10.1016/j.apsusc.2019.05.258
  7. M. L. Pang, J. Lin, J. Fu, Z. Y. Cheng, Luminescent properties of Gd2Ti2O7:Eu3+ phosphor films prepared by Sol-gel process, Mater. Res. Bull., 39 (2004) 1607-1614. https://doi.org/10.1016/j.materresbull.2004.05.016
  8. S. Cho, Structural and optical properties of sm-doped BaMoO4 phosphor thin films deposited by radio-frequency magnetron sputtering, J. Korean Phys. Soc., 76 (2020) 745-749. https://doi.org/10.3938/jkps.76.745
  9. A. O. Bokuniaeva, A. S. Vorokh, Estimation of particle size using the debye equation and the schrrer formula for polyphasic TiO2 powder, J. Phys. Conf. Ser., 1410 (2019) 012057. https://doi.org/10.1088/1742-6596/1410/1/012057
  10. D. Kang, S. Cho, Effect of deposition temperature on the properties of Eu3+-doped MgMoO4 phosphor thin films, J. Kor. Inst. Surf. Eng., 49 (2016) 81-86. https://doi.org/10.5695/JKISE.2016.49.1.81
  11. F. A. Mir, Transparent wide band gap crystals follow indirect allowed transition and bipolaron hopping mechanism, Results Phys., 4 (2014) 103-104. https://doi.org/10.1016/j.rinp.2014.06.001
  12. A. Bouhdjer, A. Attaf, H. Saidi, H. Bendjedidi, Y. Benkhetta, I. Bouhaf, Correlation between the structural, morphological, optical, and electrical properties of In2O3 thin films obtained by an ultrasonic spray CVD process, J. Semicond., 36 (2015) 082002. https://doi.org/10.1088/1674-4926/36/8/082002
  13. Y. Jin, Y. Hu, L. Chen, X. Wang, G. Ju, Z. Mou, F. Liang, Luminescence properties of a novel orange emission long persistent phosphor CaO:Sm3+, Opt. Commun., 311 (2013) 266-269. https://doi.org/10.1016/j.optcom.2013.08.086
  14. X. Zhang, X. H. Xu, J. B. Qiu, X. Yu, Effects of Li+ on photoluminescence of Sr3SiO5:Sm3+ red phosphor, Chin. Phys. B, 22 (2013) 097801. https://doi.org/10.1088/1674-1056/22/9/097801
  15. J. Liao, L. Liu, H. You, H. Huang, W. You, Hydrothermal preparation and luminescence property of MWO4:Sm3+ (M=Ca, Sr, Ba) red phosphors, Optik, 123 (2012) 901-905. https://doi.org/10.1016/j.ijleo.2011.07.002
  16. M. Puchalska, E. Zych, The effect of charge compensation by means of Na+ ions on the luminescence behavior of Sm3+-doped CaAl4O7 phosphor, J. Lumin., 132 (2012) 826-831. https://doi.org/10.1016/j.jlumin.2011.11.015
  17. Z. Yang, Y. Han, Y. Song, Y. Zhao, P. Liu, Synthesis and luminescence properties of a novel red Sr3Bi(PO4)3:Sm3+ phosphor, J. Rare Earth., 30 (2012) 1199-1202. https://doi.org/10.1016/S1002-0721(12)60205-1