Acknowledgement
This study was supported by grants from the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT of Korea (2017R1A2B3007123, 2019R1F1A1060805, 2019R1I1A1A01058091, 2020R1A2C3004843, 2020R1A4A3078962), and from the Asan Institute for Life Sciences (2019-IP0855-1).
References
- Acs, P., Bauer, P.O., Mayer, B., Bera, T., Macallister, R., Mezey, E., and Pastan, I. (2015). A novel form of ciliopathy underlies hyperphagia and obesity in Ankrd26 knockout mice. Brain Struct. Funct. 220, 1511-1528. https://doi.org/10.1007/s00429-014-0741-9
- Alvarez-Satta, M., Castro-Sanchez, S., and Valverde, D. (2015). Alstrom syndrome: current perspectives. Appl. Clin. Genet. 8, 171-179.
- Anvarian, Z., Mykytyn, K., Mukhopadhyay, S., Pedersen, L.B., and Christensen, S.T. (2019). Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol. 15, 199-219. https://doi.org/10.1038/s41581-019-0116-9
- Aznar, N. and Billaud, M. (2010). Primary cilia bend LKB1 and mTOR to their will. Dev. Cell 19, 792-794. https://doi.org/10.1016/j.devcel.2010.11.016
- Bashford, A.L. and Subramanian, V. (2019). Mice with a conditional deletion of Talpid3 (KIAA0586) - a model for Joubert syndrome. J. Pathol. 248, 396-408. https://doi.org/10.1002/path.5271
- Bera, T.K., Liu, X.F., Yamada, M., Gavrilova, O., Mezey, E., Tessarollo, L., Anver, M., Hahn, Y., Lee, B., and Pastan, I. (2008). A model for obesity and gigantism due to disruption of the Ankrd26 gene. Proc. Natl. Acad. Sci. U. S. A. 105, 270-275. https://doi.org/10.1073/pnas.0710978105
- Berbari, N.F., Lewis, J.S., Bishop, G.A., Askwith, C.C., and Mykytyn, K. (2008). Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc. Natl. Acad. Sci. U. S. A. 105, 4242-4246. https://doi.org/10.1073/pnas.0711027105
- Berbari, N.F., O'Connor, A.K., Haycraft, C.J., and Yoder, B.K. (2009). The primary cilium as a complex signaling center. Curr. Biol. 19, R526-R535. https://doi.org/10.1016/j.cub.2009.05.025
- Berbari, N.F., Pasek, R.C., Malarkey, E.B., Yazdi, S.M.Z., McNair, A.D., Lewis, W.R., Nagy, T.R., Kesterson, R.A., and Yoder, B.K. (2013). Leptin resistance is a secondary consequence of the obesity in ciliopathy mutant mice. Proc. Natl. Acad. Sci. U. S. A. 110, 7796-7801. https://doi.org/10.1073/pnas.1210192110
- Borman, A.D., Pearce, L.R., Mackay, D.S., Nagel-Wolfrum, K., Davidson, A.E., Henderson, R., Garg, S., Waseem, N.H., Webster, A.R., Plagnol, V., et al. (2014). A homozygous mutation in the TUB gene associated with retinal dystrophy and obesity. Hum. Mutat. 35, 289-293. https://doi.org/10.1002/humu.22482
- Bromberg, Y., Overton, J., Vaisse, C., Leibel, R.L., and Rost, B. (2009). In silico mutagenesis: a case study of the melanocortin 4 receptor. FASEB J. 23, 3059-3069. https://doi.org/10.1096/fj.08-127530
- Cao, H., Chen, X., Yang, Y., and Storm, D.R. (2016). Disruption of type 3 adenylyl cyclase expression in the hypothalamus leads to obesity. Integr. Obes. Diabetes 2, 225-228. https://doi.org/10.15761/IOD.1000149
- Collin, G.B., Cyr, E., Bronson, R., Marshall, J.D., Gifford, E.J., Hicks, W., Murray, S.A., Zheng, Q.Y., Smith, R.S., Nishina, P.M., et al. (2005). Alms1-disrupted mice recapitulate human Alstrom syndrome. Hum. Mol. Genet. 14, 2323-2333. https://doi.org/10.1093/hmg/ddi235
- Davenport, J.R., Watts, A.J., Roper, V.C., Croyle, M.J., van Groen, T., Wyss, J.M., Nagy, T.R., Kesterson, R.A., and Yoder, B.K. (2007). Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr. Biol. 17, 1586-1594. https://doi.org/10.1016/j.cub.2007.08.034
- Dong, C., Li, W.D., Geller, F., Lei, L., Li, D., Gorlova, O.Y., Hebebrand, J., Amos, C.I., Nicholls, R.D., and Price, R.A. (2005). Possible genomic imprinting of three human obesity-related genetic loci. Am. J. Hum. Genet. 76, 427-437. https://doi.org/10.1086/428438
- Forsythe, E. and Beales, P.L. (2013). Bardet-Biedl syndrome. Eur. J. Hum. Genet. 21, 8-13. https://doi.org/10.1038/ejhg.2012.115
- Frederich, R.C., Hamann, A., Anderson, S., Lollmann, B., Lowell, B.B., and Flier, J.S. (1995). Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat. Med. 1, 1311-1314. https://doi.org/10.1038/nm1295-1311
- Grarup, N., Moltke, I., Andersen, M.K., Dalby, M., Vitting-Seerup, K., Kern, T., Mahendran, Y., Jorsboe, E., Larsen, C.V.L., Dahl-Petersen, I.K., et al. (2018). Loss-of-function variants in ADCY3 increase risk of obesity and type 2 diabetes. Nat. Genet. 50, 172-174. https://doi.org/10.1038/s41588-017-0022-7
- Guo, D.F., Cui, H., Zhang, Q., Morgan, D.A., Thedens, D.R., Nishimura, D., Grobe, J.L., Sheffield, V.C., and Rahmouni, K. (2016). The BBSome controls energy homeostasis by mediating the transport of the leptin receptor to the plasma membrane. PLoS Genet. 12, e1005890. https://doi.org/10.1371/journal.pgen.1005890
- Guo, D.F., Lin, Z., Wu, Y., Searby, C., Thedens, D.R., Richerson, G.B., Usachev, Y.M., Grobe, J.L., Sheffield, V.C., and Rahmouni, K. (2019). The BBSome in POMC and AgRP neurons is necessary for body weight regulation and sorting of metabolic receptors. Diabetes 68, 1591-1603. https://doi.org/10.2337/db18-1088
- Guo, J., Otis, J.M., Higginbotham, H., Monckton, C., Cheng, J., Asokan, A., Mykytyn, K., Caspary, T., Stuber, G.D., and Anton, E.S. (2017). Primary cilia signaling shapes the development of interneuronal connectivity. Dev. Cell 42, 286-300.e4. https://doi.org/10.1016/j.devcel.2017.07.010
- Halaas, J.L., Gajiwala, K.S., Maffei, M., Cohen, S.L., Chait, B.T., Rabinowitz, D., Lallone, R.L., Burley, S.K., and Friedman, J.M. (1995). Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269, 543-546. https://doi.org/10.1126/science.7624777
- Han, Y.M., Kang, G.M., Byun, K., Ko, H.W., Kim, J., Shin, M.S., Kim, H.K., Gil, S.Y., Yu, J.H., Lee, B., et al. (2014). Leptin-promoted cilia assembly is critical for normal energy balance. J. Clin. Invest. 124, 2193-2197. https://doi.org/10.1172/JCI69395
- He, W., Ikeda, S., Bronson, R.T., Yan, G., Nishina, P.M., North, M.A., and Naggert, J.K. (2000). GFP-tagged expression and immunohistochemical studies to determine the subcellular localization of the tubby gene family members. Brain Res. Mol. Brain Res. 81, 109-117. https://doi.org/10.1016/S0169-328X(00)00164-9
- Hearn, T., Spalluto, C., Phillips, V.J., Renforth, G.L., Copin, N., Hanley, N.A., and Wilson, D.I. (2005). Subcellular localization of ALMS1 supports involvement of centrosome and basal body dysfunction in the pathogenesis of obesity, insulin resistance, and type 2 diabetes. Diabetes 54, 1581-1587. https://doi.org/10.2337/diabetes.54.5.1581
- Heydet, D., Chen, L.X., Larter, C.Z., Inglis, C., Silverman, M.A., Farrell, G.C., and Leroux, M.R. (2013). A truncating mutation of Alms1 reduces the number of hypothalamic neuronal cilia in obese mice. Dev. Neurobiol. 73, 1-13. https://doi.org/10.1002/dneu.22031
- Ishikawa, H. and Marshall, W.F. (2011). Ciliogenesis: building the cell's antenna. Nat. Rev. Mol. Cell Biol. 12, 222-234. https://doi.org/10.1038/nrm3085
- Jacoby, M., Cox, J.J., Gayral, S., Hampshire, D.J., Ayub, M., Blockmans, M., Pernot, E., Kisseleva, M.V., Compere, P., Schiffmann, S.N., et al. (2009). INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nat. Genet. 41, 1027-1031. https://doi.org/10.1038/ng.427
- Kang, G.M., Han, Y.M., Ko, H.W., Kim, J., Oh, B.C., Kwon, I., and Kim, M.S. (2015). Leptin elongates hypothalamic neuronal cilia via transcriptional regulation and actin destabilization. J. Biol. Chem. 290, 18146-18155. https://doi.org/10.1074/jbc.M115.639468
- Kang, S. (2021). Adipose tissue malfunction drives metabolic dysfunction in Alstrom syndrome. Diabetes 70, 323-325. https://doi.org/10.2337/dbi20-0041
- Kopinke, D., Roberson, E.C., and Reiter, J.F. (2017). Ciliary Hedgehog signaling restricts injury-induced adipogenesis. Cell 170, 340-351.e12. https://doi.org/10.1016/j.cell.2017.06.035
- Krashes, M.J., Lowell, B.B., and Garfield, A.S. (2016). Melanocortin-4 receptor-regulated energy homeostasis. Nat. Neurosci. 19, 206-219. https://doi.org/10.1038/nn.4202
- Kumamoto, N., Gu, Y., Wang, J., Janoschka, S., Takemaru, K., Levine, J., and Ge, S. (2012). A role for primary cilia in glutamatergic synaptic integration of adult-born neurons. Nat. Neurosci. 15, 399-405, S1. https://doi.org/10.1038/nn.3042
- Kwon, O., Kim, K.W., and Kim, M.S. (2016). Leptin signalling pathways in hypothalamic neurons. Cell. Mol. Life Sci. 73, 1457-1477. https://doi.org/10.1007/s00018-016-2133-1
- Lechtreck, K.F. (2015). IFT-cargo interactions and protein transport in cilia. Trends Biochem. Sci. 40, 765-778. https://doi.org/10.1016/j.tibs.2015.09.003
- Lee, C.H., Song, D.K., Park, C.B., Choi, J., Kang, G.M., Shin, S.H., Kwon, I., Park, S., Kim, S., Kim, J.Y., et al. (2020). Primary cilia mediate early life programming of adiposity through lysosomal regulation in the developing mouse hypothalamus. Nat. Commun. 11, 5772. https://doi.org/10.1038/s41467-020-19638-4
- Liu, P. and Lechtreck, K.F. (2018). The Bardet-Biedl syndrome protein complex is an adapter expanding the cargo range of intraflagellar transport trains for ciliary export. Proc. Natl. Acad. Sci. U. S. A. 115, E934-E943.
- Loktev, A.V. and Jackson, P.K. (2013). Neuropeptide Y family receptors traffic via the Bardet-Biedl syndrome pathway to signal in neuronal primary cilia. Cell Rep. 5, 1316-1329. https://doi.org/10.1016/j.celrep.2013.11.011
- Loos, R.J. and Yeo, G.S. (2014). The bigger picture of FTO: the first GWAS-identified obesity gene. Nat. Rev. Endocrinol. 10, 51-61. https://doi.org/10.1038/nrendo.2013.227
- Lubrano-Berthelier, C., Dubern, B., Lacorte, J.M., Picard, F., Shapiro, A., Zhang, S., Bertrais, S., Hercberg, S., Basdevant, A., Clement, K., et al. (2006). Melanocortin 4 receptor mutations in a large cohort of severely obese adults: prevalence, functional classification, genotype-phenotype relationship, and lack of association with binge eating. J. Clin. Endocrinol. Metab. 91, 1811-1818. https://doi.org/10.1210/jc.2005-1411
- Marion, V., Stoetzel, C., Schlicht, D., Messaddeq, N., Koch, M., Flori, E., Danse, J.M., Mandel, J.L., and Dollfus, H. (2009). Transient ciliogenesis involving Bardet-Biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation. Proc. Natl. Acad. Sci. U. S. A. 106, 1820-1825. https://doi.org/10.1073/pnas.0812518106
- Morton, G.J., Cummings, D.E., Baskin, D.G., Barsh, G.S., and Schwartz, M.W. (2006). Central nervous system control of food intake and body weight. Nature 443, 289-295. https://doi.org/10.1038/nature05026
- Nies, V.J.M., Struik, D., Wolfs, M.G.M., Rensen, S.S., Szalowska, E., Unmehopa, U.A., Fluiter, K., van der Meer, T.P., Hajmousa, G., Buurman, W.A., et al. (2018). TUB gene expression in hypothalamus and adipose tissue and its association with obesity in humans. Int. J. Obes. (Lond.) 42, 376-383. https://doi.org/10.1038/ijo.2017.214
- Noben-Trauth, K., Naggert, J.K., North, M.A., and Nishina, P.M. (1996). A candidate gene for the mouse mutation tubby. Nature 380, 534-538. https://doi.org/10.1038/380534a0
- Ollmann, M.M., Wilson, B.D., Yang, Y.K., Kerns, J.A., Chen, Y., Gantz, I., and Barsh, G.S. (1997). Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135-138. https://doi.org/10.1126/science.278.5335.135
- Pampliega, O., Orhon, I., Patel, B., Sridhar, S., Diaz-Carretero, A., Beau, I., Codogno, P., Satir, B.H., Satir, P., and Cuervo, A.M. (2013). Functional interaction between autophagy and ciliogenesis. Nature 502, 194-200. https://doi.org/10.1038/nature12639
- Pitman, J.L., Wheeler, M.C., Lloyd, D.J., Walker, J.R., Glynne, R.J., and Gekakis, N. (2014). A gain-of-function mutation in adenylate cyclase 3 protects mice from diet-induced obesity. PLoS One 9, e110226. https://doi.org/10.1371/journal.pone.0110226
- Pomeroy, J., Krentz, A.D., Richardson, J.G., Berg, R.L., VanWormer, J.J., and Haws, R.M. (2021). Bardet-Biedl syndrome: Weight patterns and genetics in a rare obesity syndrome. Pediatr. Obes. 16, e12703.
- Qiu, L., LeBel, R.P., Storm, D.R., and Chen, X. (2016). Type 3 adenylyl cyclase: a key enzyme mediating the cAMP signaling in neuronal cilia. Int. J. Physiol. Pathophysiol. Pharmacol. 8, 95-108.
- Qu, D., Ludwig, D.S., Gammeltoft, S., Piper, M., Pelleymounter, M.A., Cullen, M.J., Mathes, W.F., Przypek, R., Kanarek, R., and Maratos-Flier, E. (1996). A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380, 243-247. https://doi.org/10.1038/380243a0
- Rahmouni, K., Fath, M.A., Seo, S., Thedens, D.R., Berry, C.J., Weiss, R., Nishimura, D.Y., and Sheffield, V.C. (2008). Leptin resistance contributes to obesity and hypertension in mouse models of Bardet-Biedl syndrome. J. Clin. Invest. 118, 1458-1467. https://doi.org/10.1172/JCI32357
- Roh, E., Song, D.K., and Kim, M.S. (2016). Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Exp. Mol. Med. 48, e216. https://doi.org/10.1038/emm.2016.4
- Rosenbaum, J.L. and Witman, G.B. (2002). Intraflagellar transport. Nat. Rev. Mol. Cell Biol. 3, 813-825. https://doi.org/10.1038/nrm952
- Saeed, S., Bonnefond, A., Tamanini, F., Mirza, M.U., Manzoor, J., Janjua, Q.M., Din, S.M., Gaitan, J., Milochau, A., Durand, E., et al. (2018). Lossof-function mutations in ADCY3 cause monogenic severe obesity. Nat. Genet. 50, 175-179. https://doi.org/10.1038/s41588-017-0023-6
- Sanchez, I. and Dynlacht, B.D. (2016). Cilium assembly and disassembly. Nat. Cell Biol. 18, 711-717. https://doi.org/10.1038/ncb3370
- Schou, K.B., Pedersen, L.B., and Christensen, S.T. (2015). Ins and outs of GPCR signaling in primary cilia. EMBO Rep. 16, 1099-1113. https://doi.org/10.15252/embr.201540530
- Schwartz, M.W., Woods, S.C., Porte, D., Jr., Seeley, R.J., and Baskin, D.G. (2000). Central nervous system control of food intake. Nature 404, 661-671. https://doi.org/10.1038/35007534
- Seo, S., Guo, D.F., Bugge, K., Morgan, D.A., Rahmouni, K., and Sheffield, V.C. (2009). Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. Hum. Mol. Genet. 18, 1323-1331. https://doi.org/10.1093/hmg/ddp031
- Shalata, A., Ramirez, M.C., Desnick, R.J., Priedigkeit, N., Buettner, C., Lindtner, C., Mahroum, M., Abdul-Ghani, M., Dong, F., Arar, N., et al. (2013). Morbid obesity resulting from inactivation of the ciliary protein CEP19 in humans and mice. Am. J. Hum. Genet. 93, 1061-1071. https://doi.org/10.1016/j.ajhg.2013.10.025
- Shimada, M., Tritos, N.A., Lowell, B.B., Flier, J.S., and Maratos-Flier, E. (1998). Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 396, 670-674. https://doi.org/10.1038/25341
- Siljee, J.E., Wang, Y., Bernard, A.A., Ersoy, B.A., Zhang, S., Marley, A., Von Zastrow, M., Reiter, J.F., and Vaisse, C. (2018). Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity. Nat. Genet. 50, 180-185. https://doi.org/10.1038/s41588-017-0020-9
- Singla, V. and Reiter, J.F. (2006). The primary cilium as the cell's antenna: signaling at a sensory organelle. Science 313, 629-633. https://doi.org/10.1126/science.1124534
- Song, D.K., Choi, J.H., and Kim, M.S. (2018). Primary cilia as a signaling platform for control of energy metabolism. Diabetes Metab. J. 42, 117-127. https://doi.org/10.4093/dmj.2018.42.2.117
- Stergiakouli, E., Gaillard, R., Tavare, J.M., Balthasar, N., Loos, R.J., Taal, H.R., Evans, D.M., Rivadeneira, F., St Pourcain, B., Uitterlinden, A.G., et al. (2014). Genome-wide association study of height-adjusted BMI in childhood identifies functional variant in ADCY3. Obesity (Silver Spring) 22, 2252-2259. https://doi.org/10.1002/oby.20840
- Stratigopoulos, G., Burnett, L.C., Rausch, R., Gill, R., Penn, D.B., Skowronski, A.A., LeDuc, C.A., Lanzano, A.J., Zhang, P., Storm, D.R., et al. (2016). Hypomorphism of Fto and Rpgrip1l causes obesity in mice. J. Clin. Invest. 126, 1897-1910. https://doi.org/10.1172/JCI85526
- Stratigopoulos, G., Martin Carli, J.F., O'Day, D.R., Wang, L., Leduc, C.A., Lanzano, P., Chung, W.K., Rosenbaum, M., Egli, D., Doherty, D.A., et al. (2014). Hypomorphism for RPGRIP1L, a ciliary gene vicinal to the FTO locus, causes increased adiposity in mice. Cell Metab. 19, 767-779. https://doi.org/10.1016/j.cmet.2014.04.009
- Sun, J.S., Yang, D.J., Kinyua, A.W., Yoon, S.G., Seong, J.K., Kim, J., Moon, S.J., Shin, D.M., Choi, Y.H., and Kim, K.W. (2021). Ventromedial hypothalamic primary cilia control energy and skeletal homeostasis. J. Clin. Invest. 131, e138107. https://doi.org/10.1172/JCI138107
- Sun, X., Haley, J., Bulgakov, O.V., Cai, X., McGinnis, J., and Li, T. (2012). Tubby is required for trafficking G protein-coupled receptors to neuronal cilia. Cilia 1, 21. https://doi.org/10.1186/2046-2530-1-21
- Tong, T., Shen, Y., Lee, H.W., Yu, R., and Park, T. (2016). Adenylyl cyclase 3 haploinsufficiency confers susceptibility to diet-induced obesity and insulin resistance in mice. Sci. Rep. 6, 34179. https://doi.org/10.1038/srep34179
- van Vliet-Ostaptchouk, J.V., Onland-Moret, N.C., Shiri-Sverdlov, R., van Gorp, P.J., Custers, A., Peeters, P.H., Wijmenga, C., Hofker, M.H., and van der Schouw, Y.T. (2008). Polymorphisms of the TUB gene are associated with body composition and eating behavior in middle-aged women. PLoS One 3, e1405. https://doi.org/10.1371/journal.pone.0001405
- Wang, Y., Bernard, A., Comblain, F., Yue, X., Paillart, C., Zhang, S., Reiter, J.F., and Vaisse, C. (2021). Melanocortin 4 receptor signals at the neuronal primary cilium to control food intake and body weight. J. Clin. Invest. 131, e142064. https://doi.org/10.1172/JCI142064
- Wang, Z., Li, V., Chan, G.C., Phan, T., Nudelman, A.S., Xia, Z., and Storm, D.R. (2009). Adult type 3 adenylyl cyclase-deficient mice are obese. PLoS One 4, e6979. https://doi.org/10.1371/journal.pone.0006979
- Wang, Z., Phan, T., and Storm, D.R. (2011). The type 3 adenylyl cyclase is required for novel object learning and extinction of contextual memory: role of cAMP signaling in primary cilia. J. Neurosci. 31, 5557-5561. https://doi.org/10.1523/JNEUROSCI.6561-10.2011
- Yan, H., Chen, C., Chen, H., Hong, H., Huang, Y., Ling, K., Hu, J., and Wei, Q. (2020). TALPID3 and ANKRD26 selectively orchestrate FBF1 localization and cilia gating. Nat. Commun. 11, 2196. https://doi.org/10.1038/s41467-020-16042-w
- Zhu, D., Shi, S., Wang, H., and Liao, K. (2009). Growth arrest induces primary-cilium formation and sensitizes IGF-1-receptor signaling during differentiation induction of 3T3-L1 preadipocytes. J. Cell Sci. 122, 2760-2768. https://doi.org/10.1242/jcs.046276