DOI QR코드

DOI QR Code

MFCCs를 이용한 입력 변환과 CNN 학습에 기반한 운영 환경 변화에 강건한 베어링 결함 진단 방법

An Input Transformation with MFCCs and CNN Learning Based Robust Bearing Fault Diagnosis Method for Various Working Conditions

  • 투고 : 2021.08.11
  • 심사 : 2021.10.25
  • 발행 : 2022.04.30

초록

기계의 주요 부품인 베어링 결함 진단에 딥러닝을 활용하는 연구가 활발하게 진행되어 좋은 성능을 달성하였으나, 학습 데이터와 테스트 데이터의 운영 환경 차이로 인해 기계가 실제로 가동되는 환경에서는 성능 저하가 발생하는 문제가 있다. 학습 데이터와 테스트 데이터의 분포 차이 문제를 다루는 방법으로 데이터 적응이 제안되어 좋은 결과를 보여주고 있으나, 각 방법이 가정하고 있는 특정 적용 시나리오를 벗어나기 어렵다는 제약이 있다. 이에 본 연구는 MFCCs를 이용한 입력 데이터의 변환과 간단한 CNN 구조를 이용해 원시 도메인 데이터로부터 생성된 모델에 대해 추가적인 학습이나 조정 없이 타겟 도메인 데이터에 대한 테스트를 강건하게 수행하는 방법을 제안하였으며, 대표적인 베어링 결함 진단 데이터셋인 CWRU 베어링 데이터를 이용해 제안한 방법에 대한 실험 및 분석을 수행하였다. 실험 결과 전이 학습 기반의 방법들과 대등한 성능을 보였으며, 입력 변환 기반의 베이스라인 방법보다는 최소 15% 정도의 높은 성능을 달성하였다.

There have been many successful researches on a bearing fault diagnosis based on Deep Learning, but there is still a critical issue of the data distribution difference between training data and test data from their different working conditions causing performance degradation in applying those methods to the machines in the field. As a solution, a data adaptation method has been proposed and showed a good result, but each and every approach is strictly limited to a specific applying scenario or presupposition, which makes it still difficult to be used as a real-world application. Therefore, in this study, we have proposed a method that, using a data transformation with MFCCs and a simple CNN architecture, can perform a robust diagnosis on a target domain data without an additional learning or tuning on the model generated from a source domain data and conducted an experiment and analysis on the proposed method with the CWRU bearing dataset, which is one of the representative datasests for bearing fault diagnosis. The experimental results showed that our method achieved an equal performance to those of transfer learning based methods and a better performance by at least 15% compared to that of an input transformation based baseline method.

키워드

참고문헌

  1. H. Qiu, J. Lee, J. Lin, and G. Yu, "Robust performance degradation assessment methods for enhanced rolling element bearing prognostics," Advanced Engineering Informatics, Vol.17, No.3-4, pp.127-140, 2003. https://doi.org/10.1016/j.aei.2004.08.001
  2. S. Nandi, H. A.Toliyat, and X. Li, "Condition monitoring and fault diagnosis of electrical motors-A review," IEEE Transactions on Energy Conversion, Vol.20, No.4, pp.719-729, 2005. https://doi.org/10.1109/TEC.2005.847955
  3. F. Camci, K. Medjaher, N. Zerhouni, and P. Nectoux, "Feature evaluation for effective bearing prognostics," Quality and Reliability Engineering International, Vol.29, No.4, pp.477-486, 2013. https://doi.org/10.1002/qre.1396
  4. M. Lebold, K. McClintic, R. Campbell, C. Byington, and K. Maynard, "Review of vibration analysis methods for gearbox diagnostics and prognostics," in Proceedings of the 54th Meeting of the Society for Machinery Failure Prevention Technology, Virginia Beach, pp.623-634, 2000.
  5. P. Wang and G. Vachtsevanos, "Fault prognostics using dynamic wavelet neural networks," AI EDAM, Vol.15, No.4, pp.349-365, 2001.
  6. R. Yan, R. X. Gao, and X. Chen, "Wavelets for fault diagnosis of rotary machines: A review with applications," Signal Processing, Vol.96, pp.1-15, 2014. https://doi.org/10.1016/j.sigpro.2013.04.015
  7. D. An, N. H. Kim, and J. H. Choi, "Practical options for selecting data-driven or physics-based prognostics algorithms with reviews," Reliability Engineering & System Safety, Vol.133, pp.223-236, 2015. https://doi.org/10.1016/j.ress.2014.09.014
  8. A. Cubillo, S. Perinpanayagam, and M. Esperon-Miguez, "A review of physics-based models in prognostics: Application to gears and bearings of rotating machinery," Advances in Mechanical Engineering, Vol.8, No.8, pp.1-21, 2016.
  9. J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao, and D. Siegel, "Prognostics and health management design for rotary machinery systems-Reviews, methodology and applications," Mechanical Systems and Signal Processing, Vol.42, No.1-2, pp.314-334, 2014. https://doi.org/10.1016/j.ymssp.2013.06.004
  10. K. L. Tsui, N. Chen, Q. Zhou, Y. Hai, and W. Wang, "Prognostics and health management: A review on data driven approaches," Mathematical Problems in Engineering, 2015.
  11. D. Wang, K. L. Tsui, and Q. Miao, "Prognostics and health management: A review of vibration based bearing and gear health indicators," IEEE Access, Vol.6, pp.665-676, 2017. https://doi.org/10.1109/access.2017.2774261
  12. Y. Lei, F. Jia, J. Lin, S. Xing, and S. X. Ding, "An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data," IEEE Transactions on Industrial Electronics, Vol.63, No.5, pp.3137-3147, 2016. https://doi.org/10.1109/TIE.2016.2519325
  13. L. Jing, M. Zhao, P. Li, and X. Xu, "A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox," Measurement, Vol.111, pp.1-10, 2017. https://doi.org/10.1016/j.measurement.2017.07.017
  14. A. Zhang, S. Li, Y. Cui, W. Yang, R. Dong, and J. Hu, "Limited data rolling bearing fault diagnosis with few-shot learning," IEEE Access, Vol.7, pp.110895-110904, 2019. https://doi.org/10.1109/ACCESS.2019.2934233
  15. W. Zhang, G. Peng, C. Li, Y. Chen, and Z. Zhang, "A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals," Sensors, Vol.17, No.2, p.425-445, 2017. https://doi.org/10.3390/s17020425
  16. L. I. Xueyi, L. I. Jialin, Q. U. Yongzhi, and H. E. David, "Semi-supervised gear fault diagnosis using raw vibration signal based on deep learning," Chinese Journal of Aeronautics, Vol.33, No.2, pp.418-426, 2020. https://doi.org/10.1016/j.cja.2019.04.018
  17. H. Li, Q. Zhang, X. Qin, and S. Yuantao, "Raw vibration signal pattern recognition with automatic hyper-parameter-optimized convolutional neural network for bearing fault diagnosis," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol.234, No.1, pp.343-360, 2020. https://doi.org/10.1177/0954406219875756
  18. G. Jin, T. Zhu, M. W. Akram, Y. Jin, and C. Zhu, "An adaptive anti-noise neural network for bearing fault diagnosis under noise and varying load conditions," IEEE Access, Vol.8, pp.74793-74807, 2020. https://doi.org/10.1109/ACCESS.2020.2989371
  19. I. Goodfellow, Y. Bengio, and A. Courville, "Deep learning," Cambridge: MIT press, 2016.
  20. R. Zhang, H. Tao, L. Wu, and Y. Guan, "Transfer learning with neural networks for bearing fault diagnosis in changing working conditions," IEEE Access, Vol.5, pp.14347-14357, 2017. https://doi.org/10.1109/ACCESS.2017.2720965
  21. B. Zhang, W. Li, X. L. Li, and S. K. Ng, "Intelligent fault diagnosis under varying working conditions based on domain adaptive convolutional neural networks," IEEE Access, Vol.6, pp.66367-66384, 2018. https://doi.org/10.1109/ACCESS.2018.2878491
  22. X. Li, W. Zhang, Q. Ding, and J. Q. Sun, "Multi-layer domain adaptation method for rolling bearing fault diagnosis," Signal Processing, Vol.157, pp.180-197, 2019. https://doi.org/10.1016/j.sigpro.2018.12.005
  23. X. Wang and F. Liu, "Triplet loss guided adversarial domain adaptation for bearing fault diagnosis," Sensors, Vol.20, No.1, pp.320-338, 2020. https://doi.org/10.3390/s20010320
  24. J. He, X. Li, Y. Chen, D. Chen, J. Guo, and Y. Zhou, "Deep transfer learning method based on 1D-CNN for bearing fault diagnosis," Shock and Vibration, 2021.
  25. W. Zhang, G. Peng, and C. Li, "Bearings fault diagnosis based on convolutional neural networks with 2-D representation of vibration signals as input," in Proceedings of the 3rd International Conference on Mechatronics and Mechanical Engineering, Shanghai, pp.13001-13005, 2016.
  26. M. J. Hasan and J. M. Kim, "Bearing fault diagnosis under variable rotational speeds using stockwell transform-based vibration imaging and transfer learning," Applied Sciences, Vol.8, No.12, p.2357-2071, 2018. https://doi.org/10.3390/app8122357
  27. Y. Du, A. Wang, S. Wang, B. He, and G. Meng, "Fault diagnosis under variable working conditions based on STFT and transfer deep residual network," Shock and Vibration, 2020.
  28. S. Lee, et al., "A study on deep learning application of vibration data and visualization of defects for predictive maintenance of gravity acceleration equipment," Applied Sciences, Vol.11, No.4, pp.1564-1578, 2021. https://doi.org/10.3390/app11041564
  29. U. E. Akpudo and J. W. Hur, "A cost-efficient MFCC-based fault detection and isolation technology for electromagnetic pumps," Electronics, Vol.10, No.4, pp.439-458, 2021. https://doi.org/10.3390/electronics10040439
  30. Z. G. Cheng, W. J. Liao, X. Y. Chen, and X. Z. Lu, "A vibration recognition method based on deep learning and signal processing," Engineering Mechanics, Vol.38, No.4, pp.230-246, 2021.
  31. A. Lerch, "An introduction to audio content analysis: Applications in signal processing and music informatics," Wiley-IEEE Press, 2012.
  32. Librosa [Internet], https://github.com/librosa/librosa
  33. F. Zheng, G. Zhang, and Z. Song, "Comparison of different implementations of MFCC," Journal of Computer Science and Technology, Vol.16, No.6, pp.582-589, 2001. https://doi.org/10.1007/BF02943243
  34. S. Gupta, J. Jaafar, W. W. Ahmad, and A. Bansal, "Feature extraction using MFCC," Signal & Image Processing: An International Journal, Vol.4, No.4, pp.101-108, 2013. https://doi.org/10.5121/sipij.2013.4408
  35. S. Tang, S. Yuan, and Y. Zhu, "Data preprocessing techniques in convolutional neural network based on fault diagnosis towards rotating machinery," IEEE Access, Vol.8, pp.149487-149496, 2020. https://doi.org/10.1109/ACCESS.2020.3012182
  36. S. Zhang, S. Zhang, B. Wang, and T. G. Habetler, "Deep learning algorithms for bearing fault diagnostics: A comprehensive review," IEEE Access, Vol.8, pp.29857-29881, 2020. https://doi.org/10.1109/ACCESS.2020.2972859
  37. K. O'Shea and R. Nash, "An introduction to convolutional neural networks," arXiv preprint arXiv:1511.08458, 2015.
  38. S. Albawi, T. A. Mohammed, and S. Al-Zawi, "Understanding of a convolutional neural network," In International Conference on Engineering and Technology, Antalya, 2017, pp.1-6.
  39. J. Jiao, M. Zhao, J. Lin, and K. Liang, "A comprehensive review on convolutional neural network in machine fault diagnosis," Neurocomputing, Vol.417, pp.36-63, 2020. https://doi.org/10.1016/j.neucom.2020.07.088
  40. Case Western Reserve University (CWRU) Bearing Data Center [Internet], https://csegroups.case.edu/bearingdatacenter/home.
  41. D. Neupane and J. Seok, "Bearing fault detection and diagnosis using case western reserve university dataset with deep learning approaches: A review," IEEE Access, Vol.8, pp.93155-93178, 2020. https://doi.org/10.1109/ACCESS.2020.2990528
  42. X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun, "Repvgg: Making vgg-style convnets great again," In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.13733-13742, 2021.
  43. L. Alzubaidi, et al., "Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions," Journal of Big Data, Vol.8, No.1, pp.1-74, 2021. https://doi.org/10.1186/s40537-020-00387-6
  44. S. A. Alim and N. K. A. Rashid, "Some commonly used speech feature extraction algorithms," in From Natural to Artificial Intelligence, IntechOpen., ch.1, pp.2-119, 2018.