참고문헌
- Abdi, D.S. and Bitsuamlak, G.T. (2014), "Wind flow simulations on idealized and real complex terrain using various turbulence models", Adv. Eng. Software 75, 30-41. https://doi.org/10.1016/j.advengsoft.2014.05.002,
- Ahmad, S. and Krishen, K. (2002), "Wind pressures on low-rise hip roof buildings", Wind Struct., 5(6), 493-514. https://doi.org/10.12989/was.2002.5.6.493.
- Alrawashdeh, H. and Stathopoulos, T. (2015), "Wind pressures on large roofs of low buildings and wind codes and standards", J. Wind Eng. Ind. Aerod., 147, 212-225. https://doi.org/10.1016/j.jweia.2015.09.014.
- AS-NZS 1170-2 (2011), Structural Design Actions Part 2: Wind Actions.
- ASCE:7-16 (2016), Minimum Design Loads for Buildings and Other Structures, ASCE 7-16 Standard, American Society of Civil Engineers, New York.
- BS 6399-2 (1997), British Standard Loading for Buildings-Part2, Code of Practice for Wind Loads, British Standards Institution.
- Cook, N.J. and Mayne, J.R. (1980), "A refined working approach to the assessment of wind loads for equivalent static design", J. Wind Eng. Ind. Aerod., 6(1-2), 125-137. https://doi.org/10.1016/0167-6105(80)90026-4.
- EN 1991-1-4 (2005), Eurocode 1: Actions on Structures - Part 1-4: General Actions - Wind Actions.
- Fouad, N.S., Mahmoud, G.H. and Nasr, N.E. (2018), "Comparative study of international codes wind loads and CFD results for low rise buildings", Alexandria Eng, J., 57(4), 3623-3639. https://doi.org/10.1016/j.aej.2017.11.023.
- Gimenez, J.M. and Facundo, B. (2019), "Optimization of RANS turbulence models using genetic algorithms to improve the prediction of wind pressure coefficients on low-rise buildings", J. Wind Eng. Ind. Aerod., 193, 103978. https://doi.org/10.1016/j.jweia.2019.103978.
- Ginger, J.D., Holmes, J.D. and Kim, P.Y. (2010), "Variation of internal pressure with varying sizes of dominant openings and volumes", J. Struct. Eng., 136(10), 1319-1326. https://doi.org/10.1061/(asce)st.1943-541x.0000225
- Gumley, S.J. (1984). "A parametric study of extreme pressures for the static design of canopy structures", J. Wind Eng. Ind. Aerod., 16(1), 43-56. https://doi.org/10.1016/0167-6105(84)90048-5.
- Gumley, S.J. (1990), Design Extreme Pressures: A Parametric Study for Canopy Roofs. University of Oxford Department of Engineering Science.
- Habte, F., Chowdhury, A.G. and Zisis, I. (2017), "Effect of wind-induced internal pressure on local frame forces of low-rise buildings", Eng. Struct., 143, 455-468. https://doi.org/10.1016/j.engstruct.2017.04.039.
- Holmes, J.D. (2003), Wind Loading of Structures, Taylor & Francis e-Library.
- IS 875 (2015), Design Loads (Other Than Earthquake) For Buildings and Structure - Code of Practise Part 3 Wind Loads.
- Jensen, M. and Franck, N. (1965), Model Scale Tests in Turbulent Wind: Part 2, Danish Technical Press.
- Karava, P., Stathopoulos, T. and Athienitis, A.K. (2006), "Impact of internal pressure coefficients on wind-driven ventilation analysis", Int. J. Vent., 5(1), 53-66. https://doi.org/10.1080/14733315.2006.11683724.
- Kasperski, M. (1996), "Design wind loads for low-rise buildings: A critical review of wind load specifications for industrial buildings", J. Wind Eng. Ind. Aerod., 61(2-3), 169-179. https://doi.org/10.1016/0167-6105(96)00051-7.
- Kind, R.J. (1986), "Worst suctions near edges of flat rooftops on low-rise buildings", J. Wind Eng. Ind. Aerod., 25(1), 31-47. https://doi.org/10.1016/0167-6105(86)90103-0.
- Krishna, P. (1995), "Wind loads on low rise buildings-A review", J. Wind Eng. Ind. Aerod., 54, 383-396. https://doi.org/10.1016/0167-6105(94)00055-I.
- Krishna, P. (1995), "Wind loads on low rise buildings - A review", J. Wind Eng. Ind. Aerod., 54/55, 383-396. https://doi.org/10.1016/0167-6105(94)00055-I.
- Kumar, S. (2020), "Wind loading on tall buildings: Review of Indian standards and recommended amendments", J. Wind Eng. Ind. Aerod., 204, 104240. https://doi.org/10.1016/j.jweia.2020.104240.
- Letchford, C.W. and Ginger, J.D. (1992), "Wind loads on planar canopy roofs - Part 1: Mean pressure distributions", J. Wind Eng. Ind. Aerod., 45(1), 25-45. https://doi.org/10.1016/0167-6105(92)90004-T.
- Lubitz, D. and White, R. (2007), "Wind-tunnel and field investigation of the effect of local wind direction on speed-up over hills", J. Wind Eng. Ind. Aerod., 95, 639-661. https://doi.org/10.1016/j.jweia.2006.09.001
- Miller, C.A. and Davenport, A.G. (1998), "Guidelines for the calculation of wind speed-ups in complex terrain", J. Wind Eng. Ind. Aerod., 74-76, 189-197. https://doi.org/10.1016/S0167-6105(98)00016-6.
- Morrison, M.J. and Gregory A.K. (2018), "Effects of turbulence intensity and scale on surface pressure Fl Uctuations on the roof of a low-rise building in the atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 183, 140-151. https://doi.org/10.1016/j.jweia.2018.10.017.
- Natalini, B., Marighetti, J.O. and Natalini, M.B. (2002), "Wind tunnel modelling of mean pressures on planar canopy roof", J. Wind Eng. Ind. Aerod., 90(4-5), 427-439. https://doi.org/10.1016/S0167-6105(01)00205-7.
- Natalini, M.B., Morel, C. and Natalini, B. (2013), "Mean loads on vaulted canopy roofs", J. Wind Eng. Ind. Aerod., 119, 102-113. https://doi.org/10.1016/j.jweia.2013.0.
- Ong, R.H., Patruno, L., Yeo, D., He, Y. and Kwok. K. (2020), "Numerical simulation of wind-induced mean and peak pressures around a low-rise structure", Eng. Struct., 214. https://doi.org/10.1016/j.engstruct.2020.110583.
- Peren, J.I., van Hooff, T., Leite, B.C. and Blocken, B. (2015), "CFD analysis of cross-ventilation of a generic isolated building with asymmetric opening positions: Impact of angle and opening location", Build. Environ., 85, 263-276. https://doi.org/10.1016/j.buildenv.20.
- Rani, N. and Ahuja A. K. (2017), "Wind pressure distribution on circular canopy roofs", ISEC 2017 - 9th International Structural Engineering and Construction Conference: Resilient Structures and Sustainable Construction 1-6. https://doi.org/10.14455/isec.res.2017.133.
- Rani, N., Ahuja A.K. and Gupta P.K. (2013), "Wind pressure distribution on flat canopy roofs", J. Academic. Ind. Res., 1(May), 771-773.
- Roy, A.K., Ahuja, A.K. and Gupta, V.K. (2009), "Variation of wind pressure on canopy-roofs", ACSGE-03, Oct(25-27), 19-30, BITS Pilani, India Variation.
- Roy, A.K., Aslam A. and Singh, J. (2017), "Wind effect on canopy roof of low-rise buildings", International Conference on Emerging Trends in Engineering Innovations & Technology Management 02(December), 365-371.
- Sakib, F.A., Stathopoulos, T. and Anjan. K.B. (2021), "A review of wind loads on canopies attached to walls of low-rise Buildings", Eng. Struct., 230, 111656. https://doi.org/10.1016/j.engstruct.2020.111656.
- Shamsoddin, S. and Porte-Agel, F. (2017), "Large-eddy simulation of atmospheric boundary- layer flow through a wind farm sited on topography", Bound Layer Meteorol. 163, 1-17. https://doi.org/10.1007/s10546-016-0216-z
- Singh, J. and Roy, A.K. (2019), "CFD simulation of the wind field around pyramidal roofed single-story buildings", SN Appl. Sci, 1(11), 1-10. https://doi.org/10.1007/s42452-019-1476-2.
- Singh, J. and Roy, A.K. (2019), "Effects of roof slope and wind direction on wind pressure distribution on the roof of a square plan pyramidal low-rise building using CFD simulation", Int. J. Adv. Struct. Eng., 11(2), 231-254. https://doi.org/10.1007/s40091-019-0227-3.
- Singh, P. and Ahuja, K.A. (2015), "Wind pressure distribution on trough canopy roofs", Int. J. Eng. Appl. Sci. (IJEAS), 2(4), 771-773.
- Stathopoulos, T. (1984), "Wind loads on low-rise buildings: A review of the state of the art", Eng. Struct., 6(2), 119-135. https://doi.org/10.1016/0141-0296(84)90005-1.
- Stathopoulos, T. and Hatem, A. (2020), "Wind loads on buildings: A code of practice perspective", J. Wind Eng. Ind. Aerod., 206, 104338. https://doi.org/10.1016/j.jweia.2020.104338.
- Stathopoulos, T. and Mohammadian, A.R. (1986), "Wind loads on low buildings with mono-sloped roofs", J. Wind Eng. Ind. Aerod., 23, 81-97. https://doi.org/10.1016/0167-6105(86)90034-6.
- Stathopoulos, T. and Saathoff, P. (1991), "Wind pressure on roofs of various geometries", J. Wind Eng. Ind. Aerod., 38(2-3), 273-84. https://doi.org/10.1016/0167-6105(91)90047-Z.
- Stathopoulos, T. and Zhou, Y.S. (1995), "Numerical evaluation of wind pressures on flat roofs with the K-ε model", Build. Environ., 30(2), 267-276. https://doi.org/10.1016/0360-1323(94)00038-T.
- Stathopoulos, T., Surry, D. and Davenport, A.G. (1979), "Wind-induced internal pressures in low buildings", Proc. 5th Int. Conf. on Wind Engineering, Fort Collins, CO.
- Surry, D. and Stathopoulos, T. (1985), The Wind Loading of Low Buildings with Mono-Sloped Roofs, University of Western Ontario BLWT-SS38.
- Tominaga, Y., Shin A., Takuya K. and Yuki A. (2015), "Air flow around isolated gable-roof buildings with different roof pitches: Wind tunnel experiments and CFD simulations", Build. Environ., 84, 204-213. https://doi.org/10.1016/j.buildenv.2014.11.012.
- Uematsu, Y. and Theodore, S. (2003), "Wind loads on free-standing canopy roofs: A review", J. Wind Eng., 28(2), 95_245-95_256. https://doi.org/10.5359/jwe.28.95_245.
- Uematsu, Y., Theodore, S. and Eri I. (2008b), "Wind loads on free-standing canopy roofs: Part 2 overall wind forces", J. Wind Eng. Ind. Aerod., 96(6-7), 1029-1042. https://doi.org/10.1016/j.jweia.2007.06.026.
- Uematsu, Y., Theodore, S. and Eri, I. (2008a), "Wind loads on free-standing canopy roofs: Part 1 local wind pressures", J. Wind Eng. Ind. Aerod., 96(6-7), 1015-1028. https://doi.org/10.1016/j.jweia.2007.06.047.
- Wang, X. J., Li, Q.S. and Li, J. C. (2020), "Field measurements and numerical simulations of wind-driven rain on a low-rise building during typhoons", J. Wind Eng. Ind. Aerod., 204. https://doi.org/10.1016/j.jweia.2020.104274.
- Weerasuriya, A.U., Hu, Z.Z., Li, S.W. and Tse, K.T. (2016), "Wind direction field under the influence of topography, part I: A descriptive model", Wind Struct., 22(4), 455-476. https://doi.org/10.12989/was.2016.22.4.455.
- Yukio T. and Ahsan, K. (2013), Adv. Struct. Wind Eng., https://doi.org/10.1007/978-4-431-54337-4_1.
- Zheng, X., Montazeri, H. and Blocken, B. (2020), "CFD simulations of wind flow and mean surface pressure for buildings with balconies: Comparison of RANS and LES", Build. Environ., 173, 106747. https://doi.org/10.1016/j.buildenv.2020.106747.