DOI QR코드

DOI QR Code

Behaviors of UHPC-filled Q960 high strength steel tubes under low-temperature compression

  • Yan, Jia-Bao (Key Laboratory of Coast Civil Structure Safety of Ministry of Education, Tianjin University) ;
  • Hu, Shunnian (School of Civil Engineering, Tianjin University) ;
  • Luo, Yan-Li (Architectural Engineering Institute IV, Automotive Engineering Corporation) ;
  • Lin, Xuchuan (Architectural Engineering Institute IV, Automotive Engineering Corporation) ;
  • Luo, Yun-Biao (Key Laboratory of Coast Civil Structure Safety of Ministry of Education, Tianjin University) ;
  • Zhang, Lingxin (Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, CEA)
  • Received : 2021.10.20
  • Accepted : 2022.04.12
  • Published : 2022.04.25

Abstract

This paper firstly proposed high performance composite columns for cold-region infrastructures using ultra-high performance concrete (UHPC) and ultra-high strength steel (UHSS) Q960E. Then, 24 square UHPC-filled UHSS tubes (UHSTCs) at low temperatures of -80, -60, -30, and 30℃ were performed under axial loads. The key influencing parameters on axial compression performance of UHSS were studied, i.e., temperature level and UHSS-tube wall thickness (t). In addition, mechanical properties of Q960E at low temperatures were also studied. Test results revealed low temperatures improved the yield/ultimate strength of Q960E. Axial compression tests on UHSTCs revealed that the dropping environmental temperature increased the compression strength and stiffness, but compromised the ductility of UHSTCs; increasing t significantly increased the strength, stiffness, and ductility of UHSTCs. This study developed numerical and theoretical models to reproduce axial compression performances of UHSTCs at low temperatures. Validations against 24 tests proved that both two methods provided reasonable simulations on axial compression performance of UHSTCs. Finally, simplified theoretical models (STMs) and modified prediction equations in AISC 360, ACI 318, and Eurocode 4 were developed to estimate the axial load capacity of UHSTCs at low temperatures.

Keywords

Acknowledgement

The authors would like to acknowledge National Natural Science Foundation of China (Grant No. 52178494) and Natural Science Foundation of Heilongjiang Province (Grant No. JQ2021E006). The authors gratefully express their gratitude for the financial supports.

References

  1. ACI 318 (2011), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute; Farmington Hills, MI, USA.
  2. AISC 360 (2010), Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, USA.
  3. Aslani, F., Uy, B., Tao, Z. and Mashiri, F. (2015), "Behaviour and design of composite columns incorporating compact high-strength steel plates", J. Constr. Steel Res., 107, 94-110. https://doi.org/10.1016/j.jcsr.2015.01.005.
  4. Bradford, M.A., Loh, H.Y. and Uy, B. (2002), "Slenderness limits for filled circular steel tubes", J. Constr. Steel Res., 58, 243-252. https://doi.org/10.1016/S0143-974X(01)00043-8.
  5. Bui, V.T., Vu, Q.V., Truong, V.H. and Kim, S.E. (2021), "Fully nonlinear inelastic analysis of rectangular CFST frames with semi-rigid connections", Steel Compos. Struct., 38(5), 497-521. http://dx.doi.org/10.12989/scs.2021.38.5.497.
  6. Chen, S., Zhang, R., Jia, L.J., Wang, J.Y. and Gu, P. (2018), "Structural behavior of UHPC filled steel tube columns under axial loading", Thin Wall Struct., 130, 550-563. https://doi.org/10.1016/j.tws.2018.06.016.
  7. Elices M., Corres, H. and Planas, J. (1986), "Behaviour at cryogenic temperatures of steel for concrete reinforcement", ACI J. 84(3), 405-411. https://doi.org/10.1016/0008-8846(86)90120-1.
  8. Ellobody, E. and Young, B. (2006), "Design and behaviour of concrete-filled cold-formed stainless steel tube columns", Eng. Struct., 28, 716-728. https://doi.org/10.1016/j.engstruct.2005.09.023.
  9. Ellobody, E., Young, B. and Lam, D. (2006), "Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns", J. Constr. Steel Res., 62, 706-715. https://doi.org/10.1016/j.jcsr.2005.11.002.
  10. Eurocode 3 (2004), Design of Steel Structures, European Committee for Standardization; Brussels, Belgium.
  11. Eurocode 4 (2004), Design of Composite Steel and Concrete Structures, European Committee for Standardization; Brussels, Belgium.
  12. Filiatrault, A. and Holleran, M. (2001), "Stress-strain behaviour of reinforcing steel and concrete under seismic strain rates and low temperature", Mater. Struct., 34(5), 235-239. https://doi.org/10.1007/BF02480594.
  13. GB/T228.1 (2010), Metallic Materials: Tensile testing, China Planning Press, Beijing, China.
  14. GB51081-2015 (2015), Technical Code for Application of Concrete under Cryogenic Circumstance, China Association for Engineering Construction Standardization, Chemical branch; Beijing, China.
  15. Ge, H.B. and Usami, T. (1992), "Strength of concrete-filled thin-walled steel box columns: experiment", J. Struct. Eng., 118(11), 3036-3054. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3036).
  16. Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001.
  17. Guler, S., Copur, A. and Aydogan, M. (2013a), "Axial capacity and ductility of circular UHPC-filled steel tube columns", Mag. Concrete. Res., 65(15), 898-905. https://doi.org/10.1680/macr.12.00211.
  18. Guler, S., Lale, E. and Aydogan, M. (2013b), "Behaviour of SFRC filled steel tube columns under axial load", Adv. Steel Constr., 9(1), 14-25. https://doi.org/10.18057/ijasc.2013.9.1.2.
  19. Guo, L., Zhang, S., Kim, W.J. and Ranzic, G. (2007), "Behavior of square hollow steel tubes and steel tubes filled with concrete", Thin Wall Struct., 45, 961-973. https://doi.org/10.1016/j.tws.2007.07.009.
  20. Han, L.H., Li, W., and Bjorhovde, R. (2014), "Developments and advanced applications of concrete filled steel tubular (CFST) structures: members", J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016.
  21. Hibbitt, H.D., Karlson, B.I. and Sorensen, E.P. (2014), ABAQUS/Standard User's Manual, Version 6.14.
  22. Hoang, A.L., Fehling, E., Lai, B., Thai, D.K. and Chau, N.V. (2019), "Experimental study on structural performance of UHPC and UHPFRC columns confined with steel tube", Eng. Struct., 187, 457-477. https://doi.org/10.1016/j.engstruct.2019.02.063.
  23. Huang, F., Yu, X. and Baochun Chen, B. (2012), "The structural performance of axially loaded CFST columns under various loading conditions", Steel Compos. Struct., 13(5), 451-471. http://dx.doi.org/10.12989/scs.2012.13.5.451.
  24. Khan, M., Uy, B., Tao, Z. and Mashiri, F. (2017), "Behaviour and design of short high-strength steel welded box and concrete-filled tube (CFT) sections", Eng. Struct., 147, 458-472. https://doi.org/10.1016/j.engstruct.2017.06.016.
  25. Lee, G.C., Shih, T.S. and Chang, K.C. (1988), "Mechanical properties of concrete at low temperature", ASCE J. Cold Reg. Eng., 2(1), 13-24. https://doi.org/10.1061/(ASCE)0887-381X(1988)2:1(13)
  26. Lee, S.H., Kim, Y.H. and Choi, S.M. (2012), "Shear strength formula of CFST column-beam pinned connections", Steel Compos. Struct., 13(5), 409-421. http://dx.doi.org/10.12989/scs.2012.13.5.409.
  27. Li, G., Chen, B., Yang, Z. and Feng, Y. (2018), "Experimental and numerical behaviour of eccentrically loaded high strength concrete filled high strength square steel tube stub columns", Thin Wall Struct., 127, 483-499. https://doi.org/10.1016/j.tws.2018.02.024.
  28. Li, G.C., Chen, B.W., Yang, Z.J., Liu, Y.P. and Feng, Y.H. (2021), "Experimental and numerical behavior of eccentrically loaded square concrete-filled steel tubular long columns made of highstrength steel and concrete", Thin Wall Struct., 159, 107289. https://doi.org/10.1016/j.tws.2020.107289.
  29. Li, S., Liew, J. Y. R. and Xiong, M.X. (2021), "Fire performance of composite columns made of high strength steel and concrete", J. Constr. Steel Res., 181(1), https://doi.org/106640.
  30. Lu, Q.R., Xu, L.H., Chi, Y., Deng, F.Q., Yu, M. and Hu, X. (2021), "A novel analysis-oriented theoretical model for steel tube confined ultra-high performance concrete", Compos. Struct., 264, 113713. https://doi.org/10.1016/j.compstruct.2021.113713.
  31. Luat, N.V., Shin, J., Han, S.W., Nguyen, N.V. and Lee, K. (2021), "Ultimate axial capacity prediction of CCFST columns using hybrid intelligence models - a new approach", Steel Compos. Struct., 40(3), 461-479. http://dx.doi.org/10.12989/scs.2021.40.3.461.
  32. Roeder, C.W., Cameron, B. and Brown, C.B. (1999), "Composite action in concrete filled tubes", J. Struct. Eng., 125(5), 477-484. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(477).
  33. Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng, 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180).
  34. Shakir-Khalil, H. and Zeghiche, J. (1994), "Experimental behavior of concrete-filled rolled rectangular hollow-section columns", Struct. Eng., 67(19), 346-353.
  35. Shams, M. and Saadcghvaziri, M.A. (1997), "State of the art of concrete-filled steel tubular columns", ACI Struct. J., 94 (5) 558-571. https://doi.org/10.14359/505.
  36. Su, M., Cai, Y., Chen, X. and Young, B. (2020), "Behaviour of concrete-filled cold-formed high strength steel circular stub columns", Thin Wall Struct., 157, 107078. https://doi.org/10.1016/j.tws.2020.107078.
  37. Tao, Z., Han, L.H. and Wang, D.Y. (2007), "Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns", Thin Wall Struct., 45, 517-527. https://doi.org/10.1016/j.tws.2007.04.003.
  38. Teng, J.G., Huang, Y.L., Lam, L. and Ye, L.P. (2007), "Theoretical model for fiber-reinforced polymer-confined concrete", J. Compos. Constr., 11(2), 201-210. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(201).
  39. Uy, B. (2001), "Strength of short concrete filled high strength steel box columns", J. Constr. Steel Res., 57(2), 113-134. https://doi.org/10.1016/S0143-974X(00)00014-6.
  40. Wang, X.D., Liu, J.P. and Zhou, X.H. (2016), "Behavior and design method of short square tube steel-reinforced-concrete columns under eccentric loading", J. Constr. Steel Res., 116, https://doi.org/193-203. 10.1016/j.jcsr.2015.09.018.
  41. Xie, J. and Yan, J.B. (2018), "Experimental studies and analysis on compressive strength of normal-weight concrete at low temperatures", Struct. Concrete., 19, 1235-1244. https://doi.org/10.1002/suco.201700009.
  42. Xie, J., Zhao, X. and Yan, J.B. (2018), "Mechanical properties of high strength steel strand at low temperatures: Tests and analysis", Constr. Build. Mater., 189, 1076-1092. https://doi.org/10.1016/j.conbuildmat.2018.09.053.
  43. Xiong, M.X. and Liew, J.Y. R. (2020), "Buckling behavior of circular steel tubes infilled with C170/185 ultra-high strength concrete under fire", Eng. Struct., 212, 110523. https://doi.org/10.1016/j.engstruct.2020.110523.
  44. Xiong, M.X. and Liew, J.Y.R. (2021), "Fire resistance of high-strength steel tubes infilled with ultra-high-strength concrete under compression", J. Constr. Steel Res., 176, 106410. https://doi.org/10.1016/j.jcsr.2020.106410.
  45. Yamamoto, T., Kawaguchi, J. and Morino, S. (2002), "Size effect on ultimate compressive strength of concrete-filled steel tube short columns", J. Struct. Constr. Eng. AIJ, 561, 237-244. https://doi.org/10.3130/aijs.67.237_2
  46. Yamana, S., Kasami, H. and Okuno, T. (1978), "Properties of concrete at very low temperatures", ACI SP-055: Douglas McHenry International Symposium on Concrete and Concrete Structures, ACI, Detroit, Michigan, SP.55, 207-222.
  47. Yan, J.B. and Xie, J. (2017), "Experimental studies on mechanical properties of steel reinforcements under cryogenic temperatures", Constr. Build. Mater., 151, 661-672. https://doi.org/10.1016/j.conbuildmat.2017.06.123.
  48. Yan, J.B., Dong, X. and Wang, T. (2020), "Axial compressive behaviours of square CFST stub columns at low temperatures", J. Constr. Steel Res., 164, 105812. https://doi.org/10.1016/j.jcsr.2019.105812.
  49. Yan, J.B., Luo, Y.L., Lin, X., Luo, Y.B. and Zhang, L. (2021a), "Effects of the Arctic low temperature on mechanical properties of Q690 and Q960 high-strength steels", Constr. Build. Mater., 300, 124022. https://doi.org/10.1016/j.conbuildmat.2021.124022.
  50. Yan, J.B., Luo, Y.L., Su, L., Lin, X., Luo, Y.B. and Zhang, L. (2021b), "Low-temperature compression behaviour of square CFST columns using Q960 ultra-high strength steel", J. Constr. Steel Res., 183C, 106727. https://doi.org/10.1016/j.jcsr.2021.106727.
  51. Yan, Y., Xu, L., Li, B., Chi, Y., Yu, M., Zhou, K. and Song, Y. (2019), "Axial behavior of ultra-high performance concrete (UHPC) filled stocky steel tubes with square sections", J. Constr. Steel Res., 158, 417-428. https://doi.org/10.1016/j.jcsr.2019.03.018.
  52. Yang, Y. and Han, L. (2006), "Compressive and flexural behaviour of recycled aggregate concrete filled steel tubes (RACFST) under short-term loadings", Steel Compos. Struct., 6(3), 257-284. http://dx.doi.org/10.12989/scs.2006.6.3.257.
  53. Zhang, S., Guo, L., Ye, Z. and Wang, Y. (2005), "Behavior of steel tube and confined high strength concrete for concrete-filled RHS tubes", Adv. Struct. Eng., 8(2) 101-116. https://doi.org/10.1260/1369433054037976.
  54. Zhou, S., Sun, Q. and Wu, Xi. (2018), "Impact of D/t ratio on circular concrete-filled high-strength steel tubular stub columns under axial compression", Thin Wall Struct., 132, 461-474. https://doi.org/10.1016/j.tws.2018.08.029.