과제정보
This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (G: 1484-980-1440). The authors, therefore, gratefully acknowledge DSR technical and financial support.
참고문헌
- Ahmad, A., Hayat, T., Shehzad, S.A. and Alsaedi, A. (2012), "Mixed convection stagnation point flow of Casson fluid with convective boundary conditions", Chinese Phys. Lett., 29(11), 114704. https://doi.org/10.1088/0256-307X/29/11/114704.
- Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", J. Struct. Stability Dynam., 17(03), 1750033. https://doi.org/10.1142/S021945541750033X.
- Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
- Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579.
- Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
- Akbas, S.D. (2018), "Forced vibration analysis of cracked nanobeams", J. Brazilian Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1.
- Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
- Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219. https://doi.org/10.12989/anr.2018.6.3.219.
- Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. http://doi.org/10.22059/jcamech.2019.281285.392.
- Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277. https://doi.org/10.12989/anr.2020.8.4.277.
- Al-Maliki, A.F., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Design, 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.
- Attia H. A. (1998), "Unsteady MHD flow near a rotating porous disk with uniform suction or injection", Fluid Dynam. Res., 23, 283-290. https://doi.org/10.1016/S0169-5983(98)80011-7.
- Attia H.A. (2006), "Unsteady flow and heat transfer of viscous incompressible fluid with temperature dependent viscosity due to a rotating disk in a porous medium", J. Phys. A: Math. General, 39, 979-991. https://doi.org/10.1088/0305-4470/39/4/017
- Avcar M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
- Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
- Benton E. R. (1966), "On the flow due to a rotating disk", Fluid Mech., 24, 781-800. https://doi.org/10.1017/S0022112066001009.
- Choi, S. (1995), "Enhancing Thermal Conductivity of Fluids with Nanoparticles", Developments and Applications of NonNewtonian Flows, FED-Vol. 231/MD-Vol. 66, ASME, New York, USA. 99-105.
- Chung, H., Turula, P. Mulcahy, T.M. and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nuclear Eng. Design, 63(1), 109-120. https://doi.org/10.1016/0029-5493(81)90020-0.
- Civalek, O. (2020), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", J. Numerical Methods Eng., 121(5), 990-1019. https://doi.org/10.1002/nme.6254.
- Civalek, O. and Jalaei, M.H. (2020), "Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method", Acta Mechanica, 231(6), 2565-2587. https://doi.org/10.1007/s00707-020-02653-3.
- Cochran W.G. (1934), "The flow due to a rotating disk", Math. Proc. Cambridge Philosophical Soc., 30(3), 365-375. https://doi.org/10.1017/S0305004100012561.
- Das, U.N., Deka, R.K. and Soundalgekar, V.M. (1994), "Effects of mass transfer on the Flow past an impulsively started infinite vertical plate with constant heat flux and chemical reaction", Forschung im Ingenieurwesen. 60, 284-287. https://doi.org/10.1007/BF02601318.
- Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., 7(2), 135. https://doi.org/10.12989/anr.2019.7.2.135.
- Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39. https://doi.org/0.12989/anr.2019.7.1.039. https://doi.org/10.12989/ANR.2019.7.1.039
- Farooji, V.E., Bajestan, E.E., Niazmand, H. and Wongwises, S. (2012), "Unconfined laminar Nano fluid flow and heat transfer around a square cylinder", J. Heat Mass Transfer, 55, 1475-1485. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.030.
- Fazilati, J. (2018), "Stability of tow-steered curved panels with geometrical defects using higher order FSM", Steel Compos. Struct., 28(1), 25-37. https://doi.org/10.12989/scs.2018.28.1.025.
- Gao, S., Peng, Z., Wang, X. and Liu, J. (2019), "Compressive behavior of circular hollow and concrete-filled steel tubular stub columns under atmospheric corrosion", Steel Compos. Struct., 33(4), 615-627. https://doi.org/10.12989/scs.2019.33.4.615.
- Hussain M, Naeem M, Shahzad A and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Adv., 7(4), 045114. https://doi.org/10.1063/1.4979112.
- Hussain, M. and Naeem, M. (2017), "Vibration analysis of single-walled carbon nanotubes using wave propagation approach", Mech. Sci., 8(1), 155-164. https://doi.org/10.5194/ms-8-155-2017.
- Hussain. M. and Naeem, M. (2018), "Vibration of single-walled carbon nanotubes based on Donnell shell theory using wave propagation approach", Novel Nanomaterials - Synthesis and Applications, Intechopen, London, United Kingdom. 78-90.
- Hussanan, A., Salleh, M.Z., Tahar, R.M. and Ilyas, K. (2014), "Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating", PLoS ONE, 9(10) e108763. https://doi.org/10.1371/journal.pone.0108763.
- Ishak, A., Nazar, R. and Pop, I. (2008), "Uniform suction/ blowing effect on flow and heat transfer due to stretching cylinder". App. Math. Mod., 32(10), 2059-2066. http://dx.doi.org/10.1016/j.apm.2007.06.036
- Kakac, S. and Pramuanjaroenkij, A. (2009), "Review of convective heat transfer enhancement with Nano fluids", J. Heat Mass Transfer, 52(13-14), 3187-3196. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006.
- Kashif, A., Muhammad, F.I., Muhammad, Z.A. and Muhammad, A. (2014), "Numerical simulation of unsteady water-based nanofluid flow and heat transfer between two orthogonally moving porous coaxial disks", J. Theoretical Appl. Mech., 52(4), 1033-1046. http://dx.doi.org/10.15632/jtam-pl.52.4.1033.
- Kashif, A., Muhammad, F.I., Muhammad, Z.A. and Muhammad, A. (2014a), "Numerical simulation of heat and mass transfer in unsteady Nano fluid between two orthogonally moving porous coaxial disks", AIP Adv., 4, https://doi.org/10.1063/1.4897947.
- Khan, M. and Malik, R. (2015), "Forced convective heat transfer to Sisko fluid flow past a stretching cylinder", AIP Adv., 5(12), 127202. http://dx.doi.org/10.1063/1.4937346.
- Kuznetsov, A.V. and Nield, D.A. (2010), "Natural convective boundary-layer flow of a Nano fluid past a vertical plate", J. Thermal Sci., 49, 243-247. https://doi.org/10.1016/j.ijthermalsci.2009.07.015.
- Loy, C.T. and Lam, K.Y. (1997), "Vibration of cylindrical shells with ring supports", J. Mech. Eng., 39, 455-471. https://doi.org/10.1016/S0020-7403(96)00035-5.
- Madani H, Hosseini H and Shokravi M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
- Mahdy, A. (2015), "Heat transfer and flow of a Casson fluid due to a stretching cylinder with the soret and dufour effects", J. Eng. Phys. Thermophy, 88(4), 928-936. https://doi.org/10.1007/s10891-015-1267-6.
- Malik, M. Y., Hussain, A., Salahuddin, T., Awais, M., Bilal, S. and Khan, F. (2016), "Flow of Sisko fluid over a stretching cylinder and heat transfer with viscous dissipation and variable thermal conductivity: A numerical study", AIP Adv., 6(4), 045118. https://doi.org/10.1063/1.4948458.
- Millsaps, K. and Pohlhausen, K. (1952), "Heat transfer by laminar flow from a rotating disk", J. Aeronautical Sci., 19, 120-126. https://doi.org/10.2514/8.1955.
- Mithal, K.G. (1961), "On the effects of uniform high suction on the steady flow of a non-Newtonian liquid due to a rotating disk", Quarterly J. Mech. Appl. Math., 14, 401-410. https://doi.org/10.1093/qjmam/14.4.403.
- Naeem, M.N., Ghamkhar, M., Arshad, S.H. and Shah, A.G. (2013), "Vibration analysis of submerged thin FGM cylindrical shells", J. Mech. Sci. Tehcnol., 27(3), 649-656. https://doi.org/10.1007/s12206-013-0119-6.
- Nield, D. A. and Kuznetsov, A.V. (2009), "The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a Nano fluid", J. Heat Mass Transfer, 52, 5792-5795. https://doi.org/10.1016/j.ijheatmasstransfer.2009.07.024.
- Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., https://doi.org/10.1177/0954406219888234.
- Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7, 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
- Salahuddin, T., Malik, M.Y., Hussain, A., Awais, M. and Bilal, S. (2017), "Mixed convection boundary layer flow of Williamson fluid with slip conditions over a stretching cylinder by using Keller-box method", Int. J. Nonlinear Sci. Numer. Simul., 18(1), 9-17. https://doi.org/10.1515/ijnsns.2015.0090.
- Sewall, J.L. and Naumann, E.C. (1968), An Experimental and Analytical Vibration Study of Thin Cylindrical Shells with and Without Longitudinal Stiffeners, National Aeronautic and Space Administration, Springfield, VA, USA.
- Shah, A.G., Mahmood, T. and Naeem, M.N. (2009), "Vibrations of FGM thin cylindrical shells with exponential volume fraction law", Appl. Math. Mech., 30(5), 607-615. https://doi.org/10.1007/s10483-009-0507-x.
- Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337
- Sharma, K. and Gupta, S. (2017), "Viscous dissipation and thermal radiation effects in MHD flow of Jeffrey nanofluid through impermeable surface with heat generation/absorption", Nonlinear Eng., 6(2), 153-166. https://doi.org/10.1515/nleng-2016-0078.
- Shehzad, S. A., Alsaedi, A. and Hayat, T. (2013), "Hydro-magnetic steady flow of Maxwell fluid over a bidirectional stretching surface with prescribed surface temperature and prescribed surface heat flux", PLoS One, 135-145. https://doi.org/10.1371/journal.pone.0068139.
- Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
- Sofiyev, A.H. and Avcar, M. (2010), "The Stability of cylindrical shells containing an FGM layer subjected to axial load on the pasternak foundation", Engineering, 2, 228-236. https://doi.org/10.4236/eng.2010.24033.
- Sparrow, E.M. and Gregg, J.L. (1960), "Mass transfer, flow and heat transfer about a rotating disk", ASME J. Heat Transfer, 82(4), 294-302. https://doi.org/10.1115/1.3679937.
- Taiyari, F., Mazzolani, F.M. and Bagheri, S. (2019), "Seismic performance assessment of steel building frames equipped with a novel type of bending dissipative braces", Steel Compos. Struct., 33(4), 525-535. https://doi.org/10.12989/scs.2019.33.4.525.
- Von Karman, T. (1921), "Uber laminare und turbulente reibung", ZAMM, 1(4), 233-252. https://doi.org/10.1002/zamm.19210010401.
- Wang, C.Y. and Ng, C.O. (2011), "Slip flow due to a stretching cylinder". Int. J. Non-Lin. Mech., 46(9), 1191-1194 https://doi.org/10.1016/j.ijnonlinmec.2011.05.04.
- Wang, X.Q. and Mujumdar, A.S. (2008), "A review on nano fluids-Part I: theoretical and numerical investigations", Brazilian J. Chemical Eng., 25, 613-630. http://scholarbank.nus.edu.sg/handle/10635/54786. https://doi.org/10.1590/S0104-66322008000400001
- Wang, X.Q. and Mujumdar, A.S. (2008), "A review on nanofluids-Part II: experiments and applications", Brazilian J. Chemical Eng., 25, 631-648. http://scholarbank.nus.edu.sg/handle/10635/68095. https://doi.org/10.1590/S0104-66322008000400002
- Xiang, Y., Ma, Y.F., Kitipornchai, S. and Lau, C.W.H. (2002), "Exact solutions for vibration of cylindrical shells with intermediate ring supports", J. Mech. Sci., 44(9),1907-1924. https://doi.org/10.1016/S0020-7403(02)00071-1.
- Yan, J. B., Dong, X. and Wang, T. (2020), "Flexural performance of double skin composite beams at the Arctic low temperature", Steel Compos. Struct., 37(4), 431-446. https://doi.org/10.12989/scs.2020.37.4.431.
- Zhou, C., Chen, Z., Li, J., Cai, L. and Huang, Z. (2020), "Structural performance of novel SCARC column under axial and eccentric loads", Steel Compos. Struct., 37(5), 503-516. https://doi.org/10.12989/scs.2020.37.5.503.