DOI QR코드

DOI QR Code

Design and behavior of two profiles for structural performance of composite structure: A fluid interaction

  • Thobiani, Faisal Al (Marine Engineering Department, Faculty of Maritime Study, King Abdulaziz University) ;
  • Hussain, Muzamal (Department of Mathematics, Goverment College University Faisalabad) ;
  • Khadimallah, Mohamed Amine (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Ghandourah, Emad (Department of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University) ;
  • Alhawsawi, Abdulsalam (Department of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University) ;
  • Alshoaibi, Adil (Department of Physics, College of Science, King Faisal University)
  • Received : 2021.02.27
  • Accepted : 2022.04.07
  • Published : 2022.04.25

Abstract

Two-dimensional stagnation point slip flow of a Casson fluid impinging normally on a flat linearly shrinking surface is considered. The modeled PDEs are changed into nonlinear ODEs through appropriate nonlinear transformations.The flow is assumed to be steady and incompressible, with external magnetic field acting on it. Similarity transformation is utilized to investigate the behavior of many parameters for heat and velocity distributions using truncation approach.The influence of buoyancy parameter, slip parameter, shrinking parameter, Casson fluid parameter on the heat profile. The effect of the magnetic parameter on the streamwise velocity profile is also investigated.

Keywords

Acknowledgement

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (G: 1484-980-1440). The authors, therefore, gratefully acknowledge DSR technical and financial support.

References

  1. Ahmad, A., Hayat, T., Shehzad, S.A. and Alsaedi, A. (2012), "Mixed convection stagnation point flow of Casson fluid with convective boundary conditions", Chinese Phys. Lett., 29(11), 114704. https://doi.org/10.1088/0256-307X/29/11/114704.
  2. Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", J. Struct. Stability Dynam., 17(03), 1750033. https://doi.org/10.1142/S021945541750033X.
  3. Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
  4. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579.
  5. Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
  6. Akbas, S.D. (2018), "Forced vibration analysis of cracked nanobeams", J. Brazilian Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1.
  7. Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
  8. Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219. https://doi.org/10.12989/anr.2018.6.3.219.
  9. Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. http://doi.org/10.22059/jcamech.2019.281285.392.
  10. Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277. https://doi.org/10.12989/anr.2020.8.4.277.
  11. Al-Maliki, A.F., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Design, 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.
  12. Attia H. A. (1998), "Unsteady MHD flow near a rotating porous disk with uniform suction or injection", Fluid Dynam. Res., 23, 283-290. https://doi.org/10.1016/S0169-5983(98)80011-7.
  13. Attia H.A. (2006), "Unsteady flow and heat transfer of viscous incompressible fluid with temperature dependent viscosity due to a rotating disk in a porous medium", J. Phys. A: Math. General, 39, 979-991. https://doi.org/10.1088/0305-4470/39/4/017
  14. Avcar M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
  15. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
  16. Benton E. R. (1966), "On the flow due to a rotating disk", Fluid Mech., 24, 781-800. https://doi.org/10.1017/S0022112066001009.
  17. Choi, S. (1995), "Enhancing Thermal Conductivity of Fluids with Nanoparticles", Developments and Applications of NonNewtonian Flows, FED-Vol. 231/MD-Vol. 66, ASME, New York, USA. 99-105.
  18. Chung, H., Turula, P. Mulcahy, T.M. and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nuclear Eng. Design, 63(1), 109-120. https://doi.org/10.1016/0029-5493(81)90020-0.
  19. Civalek, O. (2020), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", J. Numerical Methods Eng., 121(5), 990-1019. https://doi.org/10.1002/nme.6254.
  20. Civalek, O. and Jalaei, M.H. (2020), "Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method", Acta Mechanica, 231(6), 2565-2587. https://doi.org/10.1007/s00707-020-02653-3.
  21. Cochran W.G. (1934), "The flow due to a rotating disk", Math. Proc. Cambridge Philosophical Soc., 30(3), 365-375. https://doi.org/10.1017/S0305004100012561.
  22. Das, U.N., Deka, R.K. and Soundalgekar, V.M. (1994), "Effects of mass transfer on the Flow past an impulsively started infinite vertical plate with constant heat flux and chemical reaction", Forschung im Ingenieurwesen. 60, 284-287. https://doi.org/10.1007/BF02601318.
  23. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., 7(2), 135. https://doi.org/10.12989/anr.2019.7.2.135.
  24. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39. https://doi.org/0.12989/anr.2019.7.1.039. https://doi.org/10.12989/ANR.2019.7.1.039
  25. Farooji, V.E., Bajestan, E.E., Niazmand, H. and Wongwises, S. (2012), "Unconfined laminar Nano fluid flow and heat transfer around a square cylinder", J. Heat Mass Transfer, 55, 1475-1485. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.030.
  26. Fazilati, J. (2018), "Stability of tow-steered curved panels with geometrical defects using higher order FSM", Steel Compos. Struct., 28(1), 25-37. https://doi.org/10.12989/scs.2018.28.1.025.
  27. Gao, S., Peng, Z., Wang, X. and Liu, J. (2019), "Compressive behavior of circular hollow and concrete-filled steel tubular stub columns under atmospheric corrosion", Steel Compos. Struct., 33(4), 615-627. https://doi.org/10.12989/scs.2019.33.4.615.
  28. Hussain M, Naeem M, Shahzad A and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Adv., 7(4), 045114. https://doi.org/10.1063/1.4979112.
  29. Hussain, M. and Naeem, M. (2017), "Vibration analysis of single-walled carbon nanotubes using wave propagation approach", Mech. Sci., 8(1), 155-164. https://doi.org/10.5194/ms-8-155-2017.
  30. Hussain. M. and Naeem, M. (2018), "Vibration of single-walled carbon nanotubes based on Donnell shell theory using wave propagation approach", Novel Nanomaterials - Synthesis and Applications, Intechopen, London, United Kingdom. 78-90.
  31. Hussanan, A., Salleh, M.Z., Tahar, R.M. and Ilyas, K. (2014), "Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating", PLoS ONE, 9(10) e108763. https://doi.org/10.1371/journal.pone.0108763.
  32. Ishak, A., Nazar, R. and Pop, I. (2008), "Uniform suction/ blowing effect on flow and heat transfer due to stretching cylinder". App. Math. Mod., 32(10), 2059-2066. http://dx.doi.org/10.1016/j.apm.2007.06.036
  33. Kakac, S. and Pramuanjaroenkij, A. (2009), "Review of convective heat transfer enhancement with Nano fluids", J. Heat Mass Transfer, 52(13-14), 3187-3196. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006.
  34. Kashif, A., Muhammad, F.I., Muhammad, Z.A. and Muhammad, A. (2014), "Numerical simulation of unsteady water-based nanofluid flow and heat transfer between two orthogonally moving porous coaxial disks", J. Theoretical Appl. Mech., 52(4), 1033-1046. http://dx.doi.org/10.15632/jtam-pl.52.4.1033.
  35. Kashif, A., Muhammad, F.I., Muhammad, Z.A. and Muhammad, A. (2014a), "Numerical simulation of heat and mass transfer in unsteady Nano fluid between two orthogonally moving porous coaxial disks", AIP Adv., 4, https://doi.org/10.1063/1.4897947.
  36. Khan, M. and Malik, R. (2015), "Forced convective heat transfer to Sisko fluid flow past a stretching cylinder", AIP Adv., 5(12), 127202. http://dx.doi.org/10.1063/1.4937346.
  37. Kuznetsov, A.V. and Nield, D.A. (2010), "Natural convective boundary-layer flow of a Nano fluid past a vertical plate", J. Thermal Sci., 49, 243-247. https://doi.org/10.1016/j.ijthermalsci.2009.07.015.
  38. Loy, C.T. and Lam, K.Y. (1997), "Vibration of cylindrical shells with ring supports", J. Mech. Eng., 39, 455-471. https://doi.org/10.1016/S0020-7403(96)00035-5.
  39. Madani H, Hosseini H and Shokravi M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
  40. Mahdy, A. (2015), "Heat transfer and flow of a Casson fluid due to a stretching cylinder with the soret and dufour effects", J. Eng. Phys. Thermophy, 88(4), 928-936. https://doi.org/10.1007/s10891-015-1267-6.
  41. Malik, M. Y., Hussain, A., Salahuddin, T., Awais, M., Bilal, S. and Khan, F. (2016), "Flow of Sisko fluid over a stretching cylinder and heat transfer with viscous dissipation and variable thermal conductivity: A numerical study", AIP Adv., 6(4), 045118. https://doi.org/10.1063/1.4948458.
  42. Millsaps, K. and Pohlhausen, K. (1952), "Heat transfer by laminar flow from a rotating disk", J. Aeronautical Sci., 19, 120-126. https://doi.org/10.2514/8.1955.
  43. Mithal, K.G. (1961), "On the effects of uniform high suction on the steady flow of a non-Newtonian liquid due to a rotating disk", Quarterly J. Mech. Appl. Math., 14, 401-410. https://doi.org/10.1093/qjmam/14.4.403.
  44. Naeem, M.N., Ghamkhar, M., Arshad, S.H. and Shah, A.G. (2013), "Vibration analysis of submerged thin FGM cylindrical shells", J. Mech. Sci. Tehcnol., 27(3), 649-656. https://doi.org/10.1007/s12206-013-0119-6.
  45. Nield, D. A. and Kuznetsov, A.V. (2009), "The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a Nano fluid", J. Heat Mass Transfer, 52, 5792-5795. https://doi.org/10.1016/j.ijheatmasstransfer.2009.07.024.
  46. Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., https://doi.org/10.1177/0954406219888234.
  47. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7, 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  48. Salahuddin, T., Malik, M.Y., Hussain, A., Awais, M. and Bilal, S. (2017), "Mixed convection boundary layer flow of Williamson fluid with slip conditions over a stretching cylinder by using Keller-box method", Int. J. Nonlinear Sci. Numer. Simul., 18(1), 9-17. https://doi.org/10.1515/ijnsns.2015.0090.
  49. Sewall, J.L. and Naumann, E.C. (1968), An Experimental and Analytical Vibration Study of Thin Cylindrical Shells with and Without Longitudinal Stiffeners, National Aeronautic and Space Administration, Springfield, VA, USA.
  50. Shah, A.G., Mahmood, T. and Naeem, M.N. (2009), "Vibrations of FGM thin cylindrical shells with exponential volume fraction law", Appl. Math. Mech., 30(5), 607-615. https://doi.org/10.1007/s10483-009-0507-x.
  51. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337
  52. Sharma, K. and Gupta, S. (2017), "Viscous dissipation and thermal radiation effects in MHD flow of Jeffrey nanofluid through impermeable surface with heat generation/absorption", Nonlinear Eng., 6(2), 153-166. https://doi.org/10.1515/nleng-2016-0078.
  53. Shehzad, S. A., Alsaedi, A. and Hayat, T. (2013), "Hydro-magnetic steady flow of Maxwell fluid over a bidirectional stretching surface with prescribed surface temperature and prescribed surface heat flux", PLoS One, 135-145. https://doi.org/10.1371/journal.pone.0068139.
  54. Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
  55. Sofiyev, A.H. and Avcar, M. (2010), "The Stability of cylindrical shells containing an FGM layer subjected to axial load on the pasternak foundation", Engineering, 2, 228-236. https://doi.org/10.4236/eng.2010.24033.
  56. Sparrow, E.M. and Gregg, J.L. (1960), "Mass transfer, flow and heat transfer about a rotating disk", ASME J. Heat Transfer, 82(4), 294-302. https://doi.org/10.1115/1.3679937.
  57. Taiyari, F., Mazzolani, F.M. and Bagheri, S. (2019), "Seismic performance assessment of steel building frames equipped with a novel type of bending dissipative braces", Steel Compos. Struct., 33(4), 525-535. https://doi.org/10.12989/scs.2019.33.4.525.
  58. Von Karman, T. (1921), "Uber laminare und turbulente reibung", ZAMM, 1(4), 233-252. https://doi.org/10.1002/zamm.19210010401.
  59. Wang, C.Y. and Ng, C.O. (2011), "Slip flow due to a stretching cylinder". Int. J. Non-Lin. Mech., 46(9), 1191-1194 https://doi.org/10.1016/j.ijnonlinmec.2011.05.04.
  60. Wang, X.Q. and Mujumdar, A.S. (2008), "A review on nano fluids-Part I: theoretical and numerical investigations", Brazilian J. Chemical Eng., 25, 613-630. http://scholarbank.nus.edu.sg/handle/10635/54786. https://doi.org/10.1590/S0104-66322008000400001
  61. Wang, X.Q. and Mujumdar, A.S. (2008), "A review on nanofluids-Part II: experiments and applications", Brazilian J. Chemical Eng., 25, 631-648. http://scholarbank.nus.edu.sg/handle/10635/68095. https://doi.org/10.1590/S0104-66322008000400002
  62. Xiang, Y., Ma, Y.F., Kitipornchai, S. and Lau, C.W.H. (2002), "Exact solutions for vibration of cylindrical shells with intermediate ring supports", J. Mech. Sci., 44(9),1907-1924. https://doi.org/10.1016/S0020-7403(02)00071-1.
  63. Yan, J. B., Dong, X. and Wang, T. (2020), "Flexural performance of double skin composite beams at the Arctic low temperature", Steel Compos. Struct., 37(4), 431-446. https://doi.org/10.12989/scs.2020.37.4.431.
  64. Zhou, C., Chen, Z., Li, J., Cai, L. and Huang, Z. (2020), "Structural performance of novel SCARC column under axial and eccentric loads", Steel Compos. Struct., 37(5), 503-516. https://doi.org/10.12989/scs.2020.37.5.503.