References
- Arciniega, R.A. and Reddy, J.N. (2007), "Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures", Comput. Meth. Appl. Mech. Eng., 196(4-6), 1048-1073. https://doi.org/10.1016/j.cma.2006.08.014.
- Alibeigloo, A. (2009), "Static and vibration analysis of axisymmetric angle-ply laminated cylindrical shell using state space differential quadrature method", Int. J. Pressure Vessels Piping, 86(11), 738-747. https://doi.org/10.1016/j.ijpvp.2009.07.002.
- Atli-Veltin, B. and Gandhi, F. (2013), "Energy absorption of sandwiched honeycombs with facesheets under in-plane crushing", Aeronaut. J., 117(1193), 687-708. https://doi.org/10.1017/S000192400000837X.
- Alankaya, V. and Oktem, A. S. (2016), "Static analysis of laminated and sandwich composite doubly-curved shallow shells", Steel Compos. Struct., 20(5), 1043-1069. https://doi.org/10.12989/scs.2016.20.5.1043.
- Baltacioglu, A.K., Civalek, O., Akgoz, B. and Demir, F. (2011), "Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution", Int. J. Pressure Vessels and Piping, 88(8-9), 290-300. https://doi.org/10.1016/j.ijpvp.2011.06.004.
- Chaudhuri, R.A., Oktem, A.S and Soares, C.G. (2015), "Beam-column and tie-bar effects in internally pressurized thin arbitrarily laminated cantilever cylindrical shells", J. Eng. Mech., 141(3). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000763.
- Castro, S.G.P., Mittelstedt, C., Monteiro, F.A.C., Degenhardet, R., and Ziegmann, G. (2015), "Evaluation of non-linear buckling loads of geometrically imperfect composite cylinders and cones with the Ritz method", Compos. Struct., 122, 284-299. https://doi.org/10.1016/j.compstruct.2014.11.050.
- Castro, S.G.P., Mittelstedt, C., Monteiro, F.A.C., Arbelo, M.A.,Degenhardt, R. and Ziegmann, G. (2015), "A semi-analytical approach for linear and non-linear analysis of unstiffened laminated composite cylinders and cones under axial, torsion and pressure loads", Thin-Wall. Struct., 90, 61-73. https://doi.org/10.1016/j.tws.2015.01.002.
- Duc, N.D. and Thang, P.T. (2015), "Nonlinear response of imperfect eccentrically stiffened ceramic-metal-ceramic Sigmoid Functionally Graded Material (S-FGM) thin circular cylindrical shells surrounded on elastic foundations under uniform radial load", Mech. Adv. Mater. Struct., 22(12), 1031-1038. https://doi.org/10.1080/15376494.2014.910320.
- Duc, N.D., Khoa, N.D. and Thiem, H.T. (2018), "Nonlinear thermomechanical response of eccentrically stiffened Sigmoid FGM circular cylindrical shells subjected to compressive and uniform radial loads using the Reddy's third-order shear deformation shell theory", Mech. Adv. Mater. Struct., 25(13), 1156-1167. https://doi.org/10.1080/15376494.2017.1341581.
- Duc, N.D. and Cong, P.H. (2016), "Nonlinear dynamic response and vibration of sandwich composite plates with negative Poisson's ratio in auxetic honeycomb", J. Sandwich Struct. Mater., 20(6), 692-717. https://doi.org/10.1177%2F1099636216674729. https://doi.org/10.1177%2F1099636216674729
- Eipakchi, H.R. and Mahboubi Nasrekani, F. (2020a), "Vibrational behavior of composite cylindrical shells with auxetic honeycombs core layer subjected to a moving pressure", Compos. Struct., 254, 112847. https://doi.org/10.1016/j.compstruct.2020.112847.
- Eipakchi, H.R. and Mahboubi Nasrekani, F. (2020b), "Response investigation of viscoelastic cylindrical shells with geometrical nonlinearity effect under moving pressure: An analytical approach", Mech. Adv. Mater. Struct., 29(8), 1124-1137. https://doi.org/10.1080/15376494.2020.1808916.
- Eipakchi, H.R. and Mahboubi Nasrekani, F. (2020c), "Axisymmetric analysis of auxetic composite cylindrical shells with honeycomb core layer and variable thickness subjected to combined axial and non-uniform radial pressures", Mech. Adv. Mater. Struct., https://doi.org/10.1080/15376494.2020.1841346.
- Eipakchi, H.R., Mahboubi Nasrekani, F. and Ahmadi, S. (2020d), "An analytical approach for vibration behavior of viscoelastic cylindrical shells under internal moving pressure", Acta Mechanica, 231(8), 3405-3418. https://doi.org/10.1007/s00707-020-02719-2.
- Eipakchi, H.R. and Mahboubi Nasrekani, F. (2021), "Analytical solution for buckling analysis of composite cylinders with honeycomb core layer", AIAA J., 59(12), 5106-5116. https://doi.org/10.2514/1.J060422.
- Gibson, L.J. and Ashby, M.F. (1997), Cellular Solids: Structure and Properties, Second Edition, Cambridge University Press, Cambridge, UK.
- Heidari-Rarani, M. and Kharratzadeh, M. (2019), "Buckling behavior of composite cylindrical shells with cutout considering geometric imperfection", Steel Compos. Struct., 30(4), 305-313. https://doi.org/10.12989/scs.2019.30.4.305.
- Javed, S., Viswanathan, K.K. and Aziz, Z.A. (2016), "Free vibration analysis of composite cylindrical shells with non-uniform thickness walls", Steel Compos. Struct., 20(5), 1087-1102. https://doi.org/10.12989/scs.2016.20.5.1087.
- Khani, A., Abdalla, M.M. and Gurdal, Z. (2012), "Circumferential stiffness tailoring of general cross section cylinders for maximum buckling load with strength constraints", Compos. Struct., 94(9), 2851-2860. https://doi.org/10.1016/j.compstruct.2012.04.018.
- Khoshgoftar, M.J. (2019), "Second order shear deformation theory for functionally graded axisymmetric thick shell with variable thickness under non-uniform pressure", Thin-Wall. Struct., 144, 106286. https://doi.org/10.1016/j.tws.2019.106286.
- Leonetti, L., Liguori, F., Magisano, D. and Garcea, G. (2018), "An efficient isogeometric solid-shell formulation for geometrically nonlinear analysis of elastic shells", Computer Methods in Applied Mechanics and Engineering, 331, 159-183. https://doi.org/10.1016/j.cma.2017.11.025.
- Liu, N., Ren, X. and Lua, J. (2020), "An isogeometric continuum shell element for modeling the nonlinear response of functionally graded material structures", Compos. Struct., 237, 111893. https://doi.org/10.1016/j.compstruct.2020.111893.
- Lan, L., Sun, J., Hong, F., Wang, D., Zhang, Y. and Fu, M. (2020), "Nonlinear constitutive relations of thin-walled honeycomb structure", Mech. Mater., 149, 103556. https://doi.org/10.1016/j.mechmat.2020.103556.
- Mahboubi Nasrekani, F. and Eipakchi, H.R. (2015), "Nonlinear analysis of cylindrical shells with varying Thickness and moderately large deformation under nonuniform compressive pressure using the first-order shear deformation theory", J. Eng. Mech., 141(5), 04014153. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000875.
- Mallek, H., Jrad, H., Algahtani, A., Wali, M. and Dammak, F. (2019), "Geometrically non-linear analysis of FG-CNTRC shell structures with surface-bonded piezoelectric layers", Comput. Meth. Appl. Mech. Eng., 347, 679-699. https://doi.org/10.1016/j.cma.2019.01.001.
- Mahboubi Nasrekani, F. and Eipakchi, H.R. (2019a), "Analytical solution for buckling analysis of cylinders with varying thickness subjected to combined axial and radial loads", Int. J. Pressure Vessels Piping, 172, 220-226. https://doi.org/10.1016/j.ijpvp.2019.03.036.
- Mahboubi Nasrekani, F. and Eipakchi, H.R. (2019b), "Axisymmetric buckling of cylindrical shells with non-uniform thickness and initial imperfection", Int. J. Steel Struct., 19(2), 435-445. https://doi.org/10.1007/s13296-018-0132-9.
- Mirsky, I. and Hermann, G. (1958) "Axially symmetric motions of thick cylindrical shells", J. Appl. Mech., 25(1), 97-102. https://doi.org/10.1115/1.4011695.
- Nayfeh, A.H. (1981), Introduction to Perturbation Technique, John Wiley, New York.
- Paliwal, D.N. and Bhalla, V. (1993), "Large deflection analysis of cylindrical shells on a Pasternak foundation", Int. J. Pressure Vessels Piping, 53(2), 261-271. https://doi.org/10.1016/0308-0161(93)90082-5.
- Pan, Z.Z., Zhang, L.W. and Liew, K.M. (2019), "Modeling geometrically nonlinear large deformation behaviors of matrix cracked hybrid composite deep shells containing CNTRC layers", Comput. Meth. Appl. Mech. Eng., 355, 753-778. https://doi.org/10.1016/j.cma.2019.06.041.
- Rezaiee-Pajand, M., Arabi, E. and Masoodi, A.R. (2018a), "A triangular shell element for geometrically nonlinear analysis", Acta Mechanica, 229, 323-342. https://doi.org/10.1007/s00707-017-1971-8.
- Rezaiee-Pajand, M., Masoodi, A.R. and Arabi, E. (2018b), "Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element", Steel Compos. Struct., 28(3), 389-401. https://doi.org/10.12989/scs.2018.28.3.389
- Rezaiee-Pajand, M., Arabi, E. and Masoodi, A.R. (2019), "Nonlinear analysis of FG-sandwich plates and shells", Aeros. Sci. Technol., 87, 178-189. https://doi.org/10.1016/j.ast.2019.02.017
- Rezaiee-Pajand, M. and Masoodi, A.R. (2019a), "Analyzing FG shells with large deformations and finite rotations", World J. Eng., 16(5), 636-647. https://doi.org/10.1108/wje-10-2018-0357
- Rezaiee-Pajand, M. and Masoodi, A.R. (2019b), "Shell instability analysis by using mixed interpolation", J. Brazilian Soc. Mech. Sci. Eng., 41, 419. https://doi.org/10.1007/s40430-019-1937-y.
- Rezaiee-Pajand, M. and Masoodi, A.R. (2022), "Hygro-thermoelastic nonlinear analysis of functionally graded porous composite thin and moderately thick shallow panels", Mech. Adv. Mater. Struct., 29(4), 594-612. https://doi.org/10.1080/15376494.2020.1780524.
- Sadd, M.H. (2009), Elastic Theory, Application, and Numeric, Elsevier Incorporated, UK.
- Scarpa, F., Smith, F.C., Chambers, B. and Burriesci, G. (2003), "Mechanical and electromagnetic behaviour of auxetic honeycomb structures", Aeronaut. J., 107(1069), 175-183. https://doi.org/10.1017/S0001924000013269.
- Shariyat, M., Khosravi, M., Yazdani Ariatapeh, M. and Najafipour, M. (2020), "Nonlinear stress and deformation analysis of pressurized thick-walled hyperelastic cylinders with experimental verifications and material identifications", Int. J. Pressure Vessels Piping, 188, 104211. https://doi.org/10.1016/j.ijpvp.2020.104211.
- Sofiyev, A.H. (2011), "Influences of elastic foundations and boundary conditions on the buckling of laminated shell structures subjected to combined loads", Compos. Struct., 93(8), 2126-2134. https://doi.org/10.1016/j.compstruct.2011.01.023.
- Sofiyev, A.H. (2014), "The vibration and buckling of sandwich cylindrical shells covered by different coatings subjected to the hydrostatic pressure", Compos. Struct., 117(124-134). https://doi.org/10.1016/j.compstruct.2014.06.025.
- Sorohan, S., Constantinescu, D.M., Sandu, M. and Sandu, A.G. (2018a), "On the homogenization of hexagonal honeycombs under axial and shear loading. Part I: Analytical formulation for free skin effect", Mech. Mater., 119, 74-91. https://doi.org/10.1016/j.mechmat.2017.09.003.
- Sorohan, S., Constantinescu, D.M., Sandu, M. and Sandu, A.G. (2018b), "On the homogenization of hexagonal honeycombs under axial and shear loading. Part II: Comparison of free skin and rigid skin effects on effective core properties", Mech. Mater., 119, 92-108. https://doi.org/10.1016/j.mechmat.2017.09.004.
- Sobhani, E., Masoodi, A.R. and Ahmadi-Pari, A.R. (2021), "Vibration of FG-CNT and FG-GNP sandwich composite coupled conical-cylindrical-conical shell", Compos. Struct., 273, 114281. https://doi.org/10.1016/j.compstruct.2021.114281.
- Sobhani, E. and Masoodi, A.R. (2022a), "A comprehensive shell approach for vibration of porous nano-enriched polymer composite coupled spheroidal-cylindrical shells", Compos. Struct., 289, 115464. https://doi.org/10.1016/j.compstruct.2022.115464.
- Sobhani, E. and Masoodi, A.R. (2022b), "On the circumferential wave responses of connected elliptical-cylindrical shell-like submerged structures strengthened by nano-reinforcer", Ocean Eng., 247, 110718. https://doi.org/10.1016/j.oceaneng.2022.110718.
- Suzuki, K., Konno, M., Kosawada, T. and Takahashi, S. (1982), "Axisymmetric vibrations of a vessel with variable thickness", Bulletin of JSME, 25(208), 1591-1600. https://doi.org/10.1299/jsme1958.25.1591.
- Su, P., Han, B., Yang, M., Zhao, Z., Li, F., Zhang, Q., Zhang, Q., and Lu, T.J. (2020), "Energy absorption of all-metallic corrugated sandwich cylindrical shells subjected to axial compression", J. Appl. Mech., 87(12), 121008. https://doi.org/10.1115/1.4048200.
- Timoshenko, S. and Goodier, J.N. (1951), Theory of Elasticity, McGraw-Hill Book Company, USA.
- Ugural, A.C. (1981), Stresses in Plates and Shells, McGraw-Hill Book Company, USA.
- Wang, P., Chalal, H. and Abed-Meraim, F. (2017), "Quadratic prismatic and hexahedral solid-shell elements for geometric nonlinear analysis of laminated composite structures", Compos. Struct., 172, 282-296. https://doi.org/10.1016/j.compstruct.2017.03.091.
- Wu, B., Pagani, A., Chen, W.Q. and Carrera, E. (2019), "Geometrically nonlinear refined shell theories by Carrera Unified Formulation", Mech. Adv. Mater. Struct., https://doi.org/10.1080/15376494.2019.1702237.
- Wei, X., Wu, Q., Gao, Y. and Xiong, J. (2020), "Bending characteristics of all-composite hexagon honeycomb sandwich beams: experimental tests and a three-dimensional failure mechanism map", Mech. Mater., 148, 103401. https://doi.org/10.1016/j.mechmat.2020.103401.
- Yadav, K.K. and Gerasimidis, S. (2020), "Imperfection insensitivity of thin wavy cylindrical shells under axial compression or bending", J. Appl. Mech., 87(4), 041003. https://doi.org/10.1115/1.4045741.
- Yao, Y., Peng, Z., Li, J. and Chen, S. (2020), "A new elastic theory of nanocomposites with incoherent interface effect based on interface energy density", J. Appl. Mech., 87(2), 021008. https://doi.org/10.1115/1.4045624.
- Zhang, L.W., Lei, Z.X., Liew, K.M. and Yu, J.L. (2014), "Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels", Comput. Meth. Appl. Mech. Eng., 273, 1-18. https://doi.org/10.1016/j.cma.2014.01.024.
- Zhu, X., Zhang, J., Zhang, W. and Chen, J. (2019), "Vibration frequencies and energies of an auxetic honeycomb sandwich plate", Mech. Adv. Mater. Struct., 26(23), 1951-1957. https://doi.org/10.1080/15376494.2018.1455933.