DOI QR코드

DOI QR Code

Dynamic analysis by impact load in viscoelastic sandwich plates with FRP layer utilizing numerical method

  • 투고 : 2021.07.30
  • 심사 : 2022.04.13
  • 발행 : 2022.04.25

초록

The main objective of this work is presenting a mathematical model for the concrete slab with fiber reinforced polymer (FRP) layer under the impact load. Impacts are assumed to occur normally over the top slab and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the sinusoidal shear deformation theory (SSDT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure is calculated numerically so that the effects of mass, velocity and height of impactor, boundary conditions, FRP layer, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force of system. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the impact velocity of impactor yields to increases in the maximum contact force and deflection while the contact duration is decreased. The result shows that the contact force and the central deflection of the structure decreases and the contact time decreases with assuming FRP layer.

키워드

참고문헌

  1. Al-Furjan, M.S.H., Xu, M.X., Farrokhian, A., Jafari, G.S., Shen, X. and Kolahchi, R. (2022), "On wave propagation in piezoelectric-auxetic honeycomb-2D-FGM micro-sandwich beams based on modified couple stress and refined zigzag theories", Wave Rand. Complex. Media, In press.
  2. Al-Furjan, M., Farrokhian, A., Keshtegar, B., Kolahchi, R., Trung, N.-T.J.A.S. and Technology (2020), "Higher order nonlocal viscoelastic strain gradient theory for dynamic buckling analysis of carbon nanocones", Aerosp Sci Technol. 107 106259 https://doi.org/10.1016/j.ast.2020.106259
  3. Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R., Kolahchi, R. (2021), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", Thin-Wall. Struct., 163, 107706. https://doi.org/10.1016/j.tws.2021.107706.
  4. Almusallam, T., Al-Salloum, Y., Alsayed, S., Iqbal, R. and Abbas, H. (2015), "Effect of GFRP strengthening on the response of RC slabs to hard projectile impact", Nuclear Eng. Des., 286, 211-256. https://doi.org/10.1016/j.nucengdes.2015.02.017.
  5. Bodaghi, M. and Shakeri, M. (2012), "An analytical approach for free vibration and transient response of functionally graded piezoelectric cylindrical panels subjected to impulsive loads", Compos. Struct., 94(5), 1721-1735. https://doi.org/10.1016/j.compstruct.2012.01.009.
  6. Chow, S.T., Liew, K.M. and Lam, K.Y. (1992), "Transverse low velocity impact of symmetrically laminated rectangular composite plates", Compos. Struct., 20, 213-218. https://doi.org/10.1016/j.proeng.2013.09.187.
  7. Elnagar, A.B., Afefy, H.M., Barahith, A.T. and Mahmoud, M.H. (2019), "Experimental and numerical investigations on the impact resistance of SHCC-strengthened RC slabs subjected to drop weight loading", Construct. Build. Mat., 229, 116866, https://doi.org/10.1016/j.conbuildmat.2019.116866.
  8. Daneshvar, K., Moradi, M.G., Amooie, M., Chen, S., Mahdavi, G. and Hariri-Ardebili, M.A. (2020), "Response of low-percentage FRC slabs under impact loading: Experimental, numerical, and soft computing methods", Structures, 27, 975-988, https://doi.org/10.1016/j.istruc.2020.06.005.
  9. Fakhar, A. and Kolahchi, R.J.I.J.O.M.S. (2018), "Dynamic buckling of magnetorheological fluid integrated by visco-piezo-GPL reinforced plates", Int. J. Mech. Sci. 144 788-799. https://doi.org/10.1016/j.ijmecsci.2018.06.036.
  10. Guo, J., Cai, J., Chen, Q., Liu, X., Wang, Y. and Zuo, Z. (2019), "Dynamic behaviour and energy dissipation of reinforced recycled aggregate concrete beams under impact", Construct. Build. Mat., 214, 143-157. https://doi.org/10.1016/j.conbuildmat.2019.04.124.
  11. Hirwani, C.K. and Panda, S.K. (2018), "Numerical and experimental validation of nonlinear deflection and stress responses of pre-damaged glass-fibre reinforced composite structure", Ocean Eng., 159, 237-252. https://doi.org/10.1016/j.oceaneng.2018.04.035
  12. Keshtegar, B., Motezaker, M., Kolahchi, R. and Trung, N.T. (2020a), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin-Wall. Struct., 154, 106820. https://doi.org/10.1016/j.tws.2020.106820
  13. Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020b), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech. A/Solids., 82, 104010. https://doi.org/10.1016/j.euromechsol.2020.104010
  14. Kong, X., Fang, Q., Wu, H. and Peng, Y. (2016), "Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model", Int. J. Impact Eng., 95, 61-71. https://doi.org/10.1016/j.ijimpeng.2016.04.014.
  15. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A.J.I.J.o.M.S. (2017), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci. 130. 534-545 https://doi.org/10.1016/j.ijmecsci.2017.06.039
  16. Kolahchi, R., Zhu, S.P., Keshtegar, B. and Trung, N.T. (2020). "Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite martial", Aerosp. Sci. Technol., 98, 105656. https://doi.org/10.1016/j.ast.2019.105656.
  17. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057
  18. Mehar, K., Panda, S.K. and Patle, B.K. (2018), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409.
  19. Motezaker, M., Kolahchi, R., Kumar Rajak, D. and Mahmoud, S. R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., https://doi.org/10.1002/pc.26118.
  20. Mousavi, T. and Shafei, E. (2019), "Impact response of hybrid FRP-steel reinforced concrete slabs", Structures, 19, 436-448, https://doi.org/10.1016/j.istruc.2019.02.013.
  21. Ning, J., Meng, F., Ma, T. and Xu, X. (2020), "Failure analysis of reinforced concrete slab under impact loading using a novel numerical method", Int. J. Impact Eng., 144, 103647, https://doi.org/10.1016/j.ijimpeng.2020.103647.
  22. Thai, D.K. and Kim, S.E. (2017), "Numerical simulation of pre-stressed concrete slab subjected to moderate velocity impact loading", Eng. Fail. Anal., 79, 820-835, https://doi.org/10.1016/j.engfailanal.2017.05.020.
  23. Sahoo, S.S., Panda, S.K., Mahapatra, T.R. and Hirwani, C.K. (2019), "Numerical analysis of transient responses of delaminated layered structure using different mid-plane theories and experimental validation", Iran. J. Sci. Technol., Transact. Mech. Eng., 43(1), 41-56. https://doi.org/10.1007/s40997-017-0111-3.
  24. Sadraie, H., Khaloo, A. and Soltani, H. (2019), "Dynamic performance of concrete slabs reinforced with steel and GFRP bars under impact loading", Eng. Struc., 191, 62-81. https://doi.org/10.1016/j.engstruct.2019.04.038.
  25. Selim, B.A., Yin, B.B. and Liew, K.M. (2018), "Impact analysis of CNT-reinforced composite plates integrated with piezoelectric layers based on Reddy's higher-order shear deformation theory", Compos. Part B: Eng., 136, 10-19. https://doi.org/10.1016/j.compositesb.2017.09.074.
  26. Song, Z.G., Zhang, L.W. and Liew, K.M. (2016), "Dynamic responses of CNT reinforced composite plates subjected to impact loading", Compos. Part B: Eng. 99, 154-161. https://doi.org/10.1016/j.compositesb.2016.06.034.
  27. Song, M., Li, X., Kitipornchai, S., Bi, Q. and Yang, J. (2019), "Low-velocity impact response of geometrically nonlinear functionally graded graphene platelet-reinforced nanocomposite plates", Nonlinear Dyn., 95, 2333-2352. https://doi.org/10.1007/s11071-018-4695-y
  28. Song, M., Li, X., Kitipornchai, S., Bi, Q. and Yang, (2019), "J. Low-velocity impact response of geometrically nonlinear functionally graded graphene platelet-reinforced nanocomposite plates", Nonlinear Dyn., 95, 2333-2352. https://doi.org/10.1007/s11071-018-4695-y
  29. Suman, S.D., Hirwani, C.K., Chaturvedi, A. and Panda, S.K. (2017), "Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure", IOP Conf. Series: Mat. Sci. Eng., 178, 012026.
  30. Thai, H.T. and Vo, T.P. (2013), "A new sinusoidal shear deformation theory for bending, buckling, and Low velocity impact of functionally graded plates", Appl. Math. Model., 37, 3269-3281. https://doi.org/10.1016/j.apm.2012.08.008.
  31. Xu, X., Ma, T. and Ning, J. (2019), "Failure analytical model of reinforced concrete slab under impact loading", Construct. Build. Mat., 223, 679-691. https://doi.org/10.1016/j.conbuildmat.2019.07.008.
  32. Yang, Y. and Li, H. (2020), "Experimental study on shear behaviors of Partial Precast Steel Reinforced concrete beams", Steel Compos. Struct., 37, 605-620. http://dx.doi.org/10.12989/scs.2020.37.5.605.
  33. Yilmaz, T., Kirac, N., Anil, O., Erdem, R.T. and Sezar, C. (2018), "Low-velocity impact behaviour of two way RC slab strengthening with CFRP strips", Construct. build. Mat., 186, 1046-1063. https://doi.org/10.1016/j.conbuildmat.2018.08.027.
  34. Yilmaz, T., Kirac, N. and Anil, O. (2019), "Experimental investigation of axially loaded reinforced concrete square column subjected to lateral low-velocity impact loading", Struct. Concrete, 20, 1358-1378. https://doi.org/10.1002/suco.201800276.
  35. Yilmaz, T., Kirac, N. and Anil, O. (2020), "Recep Tugrul Erdem, Volkan Hoskal, Experimental and numerical investigation of impact behavior of reinforced concrete slab with different support conditions", Struct. Concrete. In press, https://doi.org/10.1002/suco.202000216.
  36. Vakhshouri, B. (2020), "Structural lightweight concrete containing expanded poly-styrene beads; Engineering properties", Steel Compos. Struct., 34, 581-597. http://dx.doi.org/10.12989/scs.2020.34.4.581.
  37. Zhang, S., Schmidt, R. and Xiansheng, Q. (2015), "Active vibration control of piezoelectric bonded smart structures using PID algorithm", Chin. J. Aeronaut., 28, 305-313. https://doi.org/10.1016/j.cja.2014.12.005.
  38. Zhang, W., Qin, Q., Li, J., Li, K., Poh, L.H., Li, Y. and Zhang, J. (2020), "Deformation and failure of hybrid composite sandwich beams with a metal foam core under quasi-static load and lowvelocity impact", Compos. Struct., 242, 112175. https://doi.org/10.1016/j.compstruct.2020.112175.