Acknowledgement
We thank anonymous referees for a careful review of this paper, which improved the clarity of its presentation. This work was supported by research fund of Chungnam National University. T. C. B. acknowledges partial support for this work from grant PHY 14-30152; Physics Frontier Center/JINA Center for the Evolution of the Elements (JINA-CEE), awarded by the U.S. National Science Foundation. T. M. acknowledges financial support from the Spanish Ministry of Science and Innovation (MICINN) through the Spanish State Research Agency, under the Severo Ochoa Program 2020-2023 (CEX2019-000920-S). Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High Performance Computing at the University of Utah. The SDSS website is www.SDSS.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, Center for Astrophysics - Harvard & Smithsonian, the Chilean Participation Group, the French Participation Group, Instituto de Astrofisica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU) / University of Tokyo, the Korean Participation Group, Lawrence Berkeley National Laboratory, Leibniz Institut fur Astrophysik Potsdam (AIP), Max-Planck-Institut fur Astronomie (MPIA Heidelberg), Max-Planck-Institut fur Astrophysik (MPA Garching), Max-Planck-Institut fur Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observatario Nacional / MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autonoma de Mexico, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University. The Guoshoujing Telescope (the Large Sky Area Multi-Object Fiber Spectroscopic Telescope, LAMOST) is a National Major Scientific Project which is built by the Chinese Academy of Sciences, funded by the National Development and Reform Commission, and operated and managed by the National Astronomical Observatories, Chinese Academy of Sciences.
References
- Abolfathi, B., Aguado, D. S., Aguilar, G., et al. 2018, The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment, ApJS, 235, 42 https://doi.org/10.3847/1538-4365/aa9e8a
- Ahumada, R., Prieto, C. A., Almeida, A., et al. 2020, The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra, ApJS, 249, 3 https://doi.org/10.3847/1538-4365/ab929e
- Alam, S., Albareti, F. D., Allende Prieto, C., et al. 2015, The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III, ApJS, 219, 12 https://doi.org/10.1088/0067-0049/219/1/12
- Allende Prieto, C., Beers, T. C., Wilhelm, R., et al. 2006, A Spectroscopic Study of the Ancient Milky Way: F- and G-Type Stars in the Third Data Release of the Sloan Digital Sky Survey, ApJ, 636, 804 https://doi.org/10.1086/498131
- Allende Prieto, C., Sivarani, T., Beers, T. C., et al. 2008, The SEGUE Stellar Parameter Pipeline. III. Comparison with High-Resolution Spectroscopy of SDSS/SEGUE Field Stars, AJ, 136, 2070 https://doi.org/10.1088/0004-6256/136/5/2070
- Alvarez, R., & Plez, B. 1998, Near-infrared narrow-band photometry of M-giant and Mira stars: models meet observations, A&A, 330, 1109
- Asplund, M., Grevesse, N., & Sauval, A. J. 2005, The Solar Chemical Composition, Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, 336, 25
- Bailer-Jones, C. A. L. 2000, Stellar parameters from very low resolution spectra and medium band filters. Teff, log g and [M/H] using neural networks, A&A, 357, 197
- Barklem, P. S., & O'Mara, B. J. 1998, The broadening of strong lines of Ca+, Mg+ and Ba+ by collisions with neutral hydrogen atoms, MNRAS, 300, 863 https://doi.org/10.1111/j.1365-8711.1998.t01-1-01942.x
- Bastian, N., & Lardo, C. 2018, Multiple Stellar Populations in Globular Clusters, ARA&A, 56, 83 https://doi.org/10.1146/annurev-astro-081817-051839
- Belokurov, V., Erkal, D., Evans, N. W., Koposov, S. E., & Deason, A. J. 2018, Co-formation of the disc and the stellar halo, MNRAS, 478, 611 https://doi.org/10.1093/mnras/sty982
- Carollo, D., Martell, S. L., Beers, T. C., & Freeman, K. C. 2013, CN Anomalies in the Halo System and the Origin of Globular Clusters in the Milky Way, ApJ, 769, 87 https://doi.org/10.1088/0004-637X/769/2/87
- Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2009, NaO anticorrelation and HB. VII. The chemical composition of first and second-generation stars in 15 globular clusters from GIRAFFE spectra, A&A, 505, 117 https://doi.org/10.1051/0004-6361/200912096
- Carretta, E. 2016, Globular clusters and their contribution to the formation of the Galactic halo, The General Assembly of Galaxy Halos: Structure, Origin and Evolution, 317, 97
- Collet, R., Asplund, M., & Trampedach, R. 2007, Three-dimensional hydrodynamical simulations of surface convection in red giant stars, A&A, 469, 687 https://doi.org/10.1051/0004-6361:20066321
- Cui, X.-Q., Zhao, Y.-H., Chu, Y.-Q., et al. 2012, The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), RAA, 12, 1197
- Demarque, P., Woo, J.-H., Kim, Y.-C., & Yi, S. K. 2004, Y2 Isochrones with an Improved Core Overshoot Treatment, ApJS, 155, 667 https://doi.org/10.1086/424966
- Fernandez-Trincado, J. G., Zamora, O., Souto, D., et al. 2019a, H-Band Discovery of Additional Second-Generation Stars in the Galactic Bulge Globular Cluster NGC 6522 as Observed by APOGEE and Gaia, A&A, 627, 178
- Fernandez-Trincado, J. G., Beers, T. C., Placco, V. M., et al. 2019b, Discovery of a New Stellar Sub-Population Residing in the (Inner) Stellar Halo of the Milky Way, ApJ, 886, L8 https://doi.org/10.3847/2041-8213/ab5286
- Fernandez-Trincado, J. G., Minniti, D., Beers, T. C.,, et al. 2020a, The Enigmatic Globular Cluster UKS 1 Obscured by the Bulge: H-band Discovery of Nitrogen-Enhanced Stars, A&A, 643, 145
- Fernandez-Trincado, J. G., Beers, T. C., Minniti, D., et al. 2020b, Discovery of a Large Population of Nitrogen-Enhanced Stars in the Magellanic Clouds, ApJ, 903, L17 https://doi.org/10.3847/2041-8213/abc01d
- Fernandez-Trincado, J. G., Beers, T. C., Minniti, D., et al. 2021a, APOGEE Discovery of a Chemically Atypical Star Disrupted from NGC 6723 and Captured by the Milky Way Bulge, A&A, 647, 64
- Fernandez-Trincado, J. G., Beers, T. C., Queiroz, A. B. A., et al. 2021b, APOGEE-2 Discovery of a Large Population of Relatively High-Metallicity Globular Cluster Debris, ApJ, 918, L37 https://doi.org/10.3847/2041-8213/ac225b
- Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, Gaia Data Release 2. Summary of the contents and survey properties, A&A, 616, A1 https://doi.org/10.1051/0004-6361/201833051
- Gustafsson, B., Edvardsson, B., Eriksson, K., et al. 2008, A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties, A&A, 486, 951 https://doi.org/10.1051/0004-6361:200809724
- Helmi, A., Babusiaux, C., Koppelman, H. H., et al. 2018, The merger that led to the formation of the Milky Way's inner stellar halo and thick disk, NATURE, 563, 85 https://doi.org/10.1038/s41586-018-0625-x
- Hill, V., Plez, B., Cayrel, R., et al. 2002, First stars. I. The extreme r-element rich, iron-poor halo giant CS 31082-001. Implications for the r-process site(s) and radioactive cosmochronology, A&A, 387, 560 https://doi.org/10.1051/0004-6361:20020434
- Horta, D., Mackereth, J. T., Schiavon, R. P., et al. 2021, The contribution of N-rich stars to the Galactic stellar halo using APOGEE red giants, MNRAS, 500, 5462
- Kayser, A., Hilker, M., Grebel, E. K., & Willemsen, P. G. 2008, Comparing CN and CH line strengths in a homogeneous spectroscopic sample of 8 Galactic globular clusters, A&A, 486, 437 https://doi.org/10.1051/0004-6361:200809446
- Koch, A., Grebel, E. K., & Martell, S. L. 2019, Purveyors of fine halos: Re-assessing globular cluster contributions to the Milky Way halo buildup with SDSS-IV, A&A, 625, A75 https://doi.org/10.1051/0004-6361/201834825
- Koppelman, H. H., Helmi, A., Massari, D., Price-Whelan, A. M., & Starkenburg, T. K. 2019, Multiple retrograde substructures in the Galactic halo: A shattered view of Galactic history, A&A, 631, L9 https://doi.org/10.1051/0004-6361/201936738
- Kupka, F., Piskunov, N., Ryabchikova, T. A., Stempels, H. C., & Weiss, W. W. 1999, VALD-2: Progress of the Vienna Atomic Line Data Base, A&AS, 138, 119 https://doi.org/10.1051/aas:1999267
- Lardo, C., Milone, A. P., Marino, A. F., et al. 2012, C and N abundances of main sequence and subgiant branch stars in NGC 1851, A&A, 541, A141 https://doi.org/10.1051/0004-6361/201118763
- Lardo, C., Battaglia, G., Pancino, E., et al. 2016, Carbon and nitrogen abundances of individual stars in the Sculptor dwarf spheroidal galaxy, A&A, 585, A70 https://doi.org/10.1051/0004-6361/201527391
- Lee, Y. S., Beers, T. C., Sivarani, T., et al. 2008a, The SEGUE Stellar Parameter Pipeline. I. Description and Comparison of Individual Methods, AJ, 136, 2022 https://doi.org/10.1088/0004-6256/136/5/2022
- Lee, Y. S., Beers, T. C., Sivarani, T., et al. 2008b, The SEGUE Stellar Parameter Pipeline. II. Validation with Galactic Globular and Open Clusters, AJ, 136, 2050 https://doi.org/10.1088/0004-6256/136/5/2050
- Lee, Y. S., Beers, T. C., Allende Prieto, C., et al. 2011, The SEGUE Stellar Parameter Pipeline. V. Estimation of Alpha-element Abundance Ratios from Low-resolution SDSS/SEGUE Stellar Spectra, AJ, 141, 90 https://doi.org/10.1088/0004-6256/141/3/90
- Lee, Y. S., Beers, T. C., Masseron, T., et al. 2013, Carbon-enhanced Metal-poor Stars in SDSS/SEGUE. I. Carbon Abundance Estimation and Frequency of CEMP Stars, AJ, 146, 132 https://doi.org/10.1088/0004-6256/146/5/132
- Lee, Y. S., Beers, T. C., Carlin, J. L., et al. 2015, Application of the SEGUE Stellar Parameter Pipeline to LAMOST Stellar Spectra, AJ, 150, 187 https://doi.org/10.1088/0004-6256/150/6/187
- Luo, A.-L., Zhao, Y.-H., Zhao, G., & et al. 2019, VizieR Online Data Catalog: LAMOST DR5 catalogs (Luo+, 2019), VizieR Online Data Catalog, V/164
- Majewski, S. R., Schiavon, R. P., Frinchaboy, P. M., et al. 2017, The Apache Point Observatory Galactic Evolution Experiment (APOGEE), AJ, 154, 94 https://doi.org/10.3847/1538-3881/aa784d
- Markwardt, C. B. 2009, Non-linear Least-squares Fitting in IDL with MPFIT, Astronomical Data Analysis Software and Systems XVIII, 411, 251
- Martell, S. L., & Grebel, E. K. 2010, Light-element abundance variations in the Milky Way halo, A&A, 519, A14 https://doi.org/10.1051/0004-6361/201014135
- Martell, S. L., Smolinski, J. P., Beers, T. C., & Grebel, E. K. 2011, Building the Galactic halo from globular clusters: evidence from chemically unusual red giants, A&A, 534, A136 https://doi.org/10.1051/0004-6361/201117644
- Martell, S. L., Shetrone, M. D., Lucatello, S., et al. 2016, Chemical Tagging in the SDSS-III/APOGEE Survey: New Identifications of Halo Stars with Globular Cluster Origins, ApJ, 825, 146 https://doi.org/10.3847/0004-637X/825/2/146
- Masseron, T., Plez, B., Primas, F., Van Eck, S., & Jorissen, A. 2006, A VLT-UVES spectrscopic analysis of C-rich Fe-poor stars, PhD thesis, Observatoire de Paris, France
- Masseron, T., Plez, B., Van Eck, S., et al. 2014, CH in stellar atmospheres: an extensive linelist, A&A, 571, A47 https://doi.org/10.1051/0004-6361/201423956
- Martin, Nicolas F., Venn, Kim A., Aguado, David S., et al. 2022, A stellar stream remnant of a globular cluster below the metallicity floor, NATURE, 601, 45 https://doi.org/10.1038/s41586-021-04162-2
- Myeong, G. C., Evans, N. W., Belokurov, V., Sanders, J. L., & Koposov, S. E. 2018, Discovery of new retrograde substructures: the shards of ω Centauri ?, MNRAS, 478, 5449 https://doi.org/10.1093/mnras/sty1403
- Myeong, G. C., Vasiliev, E., Iorio, G., Evans, N. W., & Belokurov, V. 2019, Evidence for two early accretion events that built the Milky Way stellar halo, MNRAS, 488, 1235 https://doi.org/10.1093/mnras/stz1770
- Naidu, R. P., Conroy, C., Bonaca, A., et al. 2020, Evidence from the H3 Survey That the Stellar Halo Is Entirely Comprised of Substructure, ApJ, 901, 48 https://doi.org/10.3847/1538-4357/abaef4
- Plez, B. 2012, Turbospectrum: Code for spectral synthesis, Astrophysics Source Code Library, ascl:1205.004
- Re Fiorentin, P., Bailer-Jones, C. A. L., Lee, Y. S., et al. 2007, Estimation of stellar atmospheric parameters from SDSS/SEGUE spectra, A&A, 467, 1373 https://doi.org/10.1051/0004-6361:20077334
- Schiavon, R. P., Zamora, O., Carrera, R., et al. 2017, Chemical tagging with APOGEE: discovery of a large population of N-rich stars in the inner Galaxy, MNRAS, 465, 501 https://doi.org/10.1093/mnras/stw2162
- Smith, V. V., Cunha, K., Shetrone, M. D., et al. 2013, Chemical Abundances in Field Red Giants from High-resolution H-band Spectra Using the APOGEE Spectral Linelist, ApJ, 765, 16 https://doi.org/10.1088/0004-637X/765/1/16
- Smolinski, J. P., Lee, Y. S., Beers, T. C., et al. 2011, The SEGUE Stellar Parameter Pipeline. IV. Validation with an Extended Sample of Galactic Globular and Open Clusters, AJ, 141, 89 https://doi.org/10.1088/0004-6256/141/3/89
- Smolinski, J. P., Martell, S. L., Beers, T. C., & Lee, Y. S. 2011b, A Survey of CN and CH Variations in Galactic Globular Clusters from Sloan Digital Sky Survey Spectroscopy, AJ, 142, 126 https://doi.org/10.1088/0004-6256/142/4/126
- Suda, T., Katsuta, Y., Yamada, S., et al. 2008, Stellar Abundances for the Galactic Archeology (SAGA) Database - Compilation of the Characteristics of Known Extremely Metal-Poor Stars, PASJ, 60, 1159 https://doi.org/10.1093/pasj/60.5.1159
- Tang, B., Fern'andez-Trincado, J. G., Liu, C., et al. 2020, On the Chemical and Kinematic Consistency between N-rich Metal-poor Field Stars and Enriched Populations in Globular Clusters, ApJ, 891, 28 https://doi.org/10.3847/1538-4357/ab7233
- Yanny, B., Rockosi, C., Newberg, H. J., et al. 2009, SEGUE: A Spectroscopic Survey of 240,000 Stars with g = 14-20, AJ, 137, 4377 https://doi.org/10.1088/0004-6256/137/5/4377
- York, D. G., Adelman, J., Anderson, J. E., et al. 2000, The Sloan Digital Sky Survey: Technical Summary, AJ, 120, 1579 https://doi.org/10.1086/301513