DOI QR코드

DOI QR Code

ESTIMATION OF NITROGEN-TO-IRON ABUNDANCE RATIOS FROM LOW-RESOLUTION SPECTRA

  • Kim, Changmin (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Lee, Young Sun (Department of Astronomy and Space Science, Chungnam National University) ;
  • Beers, Timothy C. (Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame) ;
  • Masseron, Thomas (Instituto de Astrofisica de Canarias)
  • Received : 2021.12.22
  • Accepted : 2022.04.05
  • Published : 2022.04.30

Abstract

We present a method to determine nitrogen abundance ratios with respect to iron ([N/Fe]) from molecular CN-band features observed in low-resolution (R ~ 2000) stellar spectra obtained by the Sloan Digital Sky Survey (SDSS) and the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Various tests are carried out to check the systematic and random errors of our technique, and the impact of signal-to-noise (S/N) ratios of stellar spectra on the determined [N/Fe]. We find that the uncertainty of our derived [N/Fe] is less than 0.3 dex for S/N ratios larger than 10 in the ranges Teff = [4000, 6000] K, log g = [0.0, 3.5], [Fe/H] = [-3.0, 0.0], [C/Fe] = [-1.0, +4.5], and [N/Fe] = [-1.0, +4.5], the parameter space that we are interested in to identify N-enhanced stars in the Galactic halo. A star-by-star comparison with a sample of stars with [N/Fe] estimates available from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) also suggests a similar level of uncertainty in our measured [N/Fe], after removing its systematic error. Based on these results, we conclude that our method is able to reproduce [N/Fe] from low-resolution spectroscopic data, with an uncertainty sufficiently small to discover N-rich stars that presumably originated from disrupted Galactic globular clusters.

Keywords

Acknowledgement

We thank anonymous referees for a careful review of this paper, which improved the clarity of its presentation. This work was supported by research fund of Chungnam National University. T. C. B. acknowledges partial support for this work from grant PHY 14-30152; Physics Frontier Center/JINA Center for the Evolution of the Elements (JINA-CEE), awarded by the U.S. National Science Foundation. T. M. acknowledges financial support from the Spanish Ministry of Science and Innovation (MICINN) through the Spanish State Research Agency, under the Severo Ochoa Program 2020-2023 (CEX2019-000920-S). Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High Performance Computing at the University of Utah. The SDSS website is www.SDSS.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, Center for Astrophysics - Harvard & Smithsonian, the Chilean Participation Group, the French Participation Group, Instituto de Astrofisica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU) / University of Tokyo, the Korean Participation Group, Lawrence Berkeley National Laboratory, Leibniz Institut fur Astrophysik Potsdam (AIP), Max-Planck-Institut fur Astronomie (MPIA Heidelberg), Max-Planck-Institut fur Astrophysik (MPA Garching), Max-Planck-Institut fur Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observatario Nacional / MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autonoma de Mexico, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University. The Guoshoujing Telescope (the Large Sky Area Multi-Object Fiber Spectroscopic Telescope, LAMOST) is a National Major Scientific Project which is built by the Chinese Academy of Sciences, funded by the National Development and Reform Commission, and operated and managed by the National Astronomical Observatories, Chinese Academy of Sciences.

References

  1. Abolfathi, B., Aguado, D. S., Aguilar, G., et al. 2018, The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment, ApJS, 235, 42 https://doi.org/10.3847/1538-4365/aa9e8a
  2. Ahumada, R., Prieto, C. A., Almeida, A., et al. 2020, The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra, ApJS, 249, 3 https://doi.org/10.3847/1538-4365/ab929e
  3. Alam, S., Albareti, F. D., Allende Prieto, C., et al. 2015, The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III, ApJS, 219, 12 https://doi.org/10.1088/0067-0049/219/1/12
  4. Allende Prieto, C., Beers, T. C., Wilhelm, R., et al. 2006, A Spectroscopic Study of the Ancient Milky Way: F- and G-Type Stars in the Third Data Release of the Sloan Digital Sky Survey, ApJ, 636, 804 https://doi.org/10.1086/498131
  5. Allende Prieto, C., Sivarani, T., Beers, T. C., et al. 2008, The SEGUE Stellar Parameter Pipeline. III. Comparison with High-Resolution Spectroscopy of SDSS/SEGUE Field Stars, AJ, 136, 2070 https://doi.org/10.1088/0004-6256/136/5/2070
  6. Alvarez, R., & Plez, B. 1998, Near-infrared narrow-band photometry of M-giant and Mira stars: models meet observations, A&A, 330, 1109
  7. Asplund, M., Grevesse, N., & Sauval, A. J. 2005, The Solar Chemical Composition, Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, 336, 25
  8. Bailer-Jones, C. A. L. 2000, Stellar parameters from very low resolution spectra and medium band filters. Teff, log g and [M/H] using neural networks, A&A, 357, 197
  9. Barklem, P. S., & O'Mara, B. J. 1998, The broadening of strong lines of Ca+, Mg+ and Ba+ by collisions with neutral hydrogen atoms, MNRAS, 300, 863 https://doi.org/10.1111/j.1365-8711.1998.t01-1-01942.x
  10. Bastian, N., & Lardo, C. 2018, Multiple Stellar Populations in Globular Clusters, ARA&A, 56, 83 https://doi.org/10.1146/annurev-astro-081817-051839
  11. Belokurov, V., Erkal, D., Evans, N. W., Koposov, S. E., & Deason, A. J. 2018, Co-formation of the disc and the stellar halo, MNRAS, 478, 611 https://doi.org/10.1093/mnras/sty982
  12. Carollo, D., Martell, S. L., Beers, T. C., & Freeman, K. C. 2013, CN Anomalies in the Halo System and the Origin of Globular Clusters in the Milky Way, ApJ, 769, 87 https://doi.org/10.1088/0004-637X/769/2/87
  13. Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2009, NaO anticorrelation and HB. VII. The chemical composition of first and second-generation stars in 15 globular clusters from GIRAFFE spectra, A&A, 505, 117 https://doi.org/10.1051/0004-6361/200912096
  14. Carretta, E. 2016, Globular clusters and their contribution to the formation of the Galactic halo, The General Assembly of Galaxy Halos: Structure, Origin and Evolution, 317, 97
  15. Collet, R., Asplund, M., & Trampedach, R. 2007, Three-dimensional hydrodynamical simulations of surface convection in red giant stars, A&A, 469, 687 https://doi.org/10.1051/0004-6361:20066321
  16. Cui, X.-Q., Zhao, Y.-H., Chu, Y.-Q., et al. 2012, The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), RAA, 12, 1197
  17. Demarque, P., Woo, J.-H., Kim, Y.-C., & Yi, S. K. 2004, Y2 Isochrones with an Improved Core Overshoot Treatment, ApJS, 155, 667 https://doi.org/10.1086/424966
  18. Fernandez-Trincado, J. G., Zamora, O., Souto, D., et al. 2019a, H-Band Discovery of Additional Second-Generation Stars in the Galactic Bulge Globular Cluster NGC 6522 as Observed by APOGEE and Gaia, A&A, 627, 178
  19. Fernandez-Trincado, J. G., Beers, T. C., Placco, V. M., et al. 2019b, Discovery of a New Stellar Sub-Population Residing in the (Inner) Stellar Halo of the Milky Way, ApJ, 886, L8 https://doi.org/10.3847/2041-8213/ab5286
  20. Fernandez-Trincado, J. G., Minniti, D., Beers, T. C.,, et al. 2020a, The Enigmatic Globular Cluster UKS 1 Obscured by the Bulge: H-band Discovery of Nitrogen-Enhanced Stars, A&A, 643, 145
  21. Fernandez-Trincado, J. G., Beers, T. C., Minniti, D., et al. 2020b, Discovery of a Large Population of Nitrogen-Enhanced Stars in the Magellanic Clouds, ApJ, 903, L17 https://doi.org/10.3847/2041-8213/abc01d
  22. Fernandez-Trincado, J. G., Beers, T. C., Minniti, D., et al. 2021a, APOGEE Discovery of a Chemically Atypical Star Disrupted from NGC 6723 and Captured by the Milky Way Bulge, A&A, 647, 64
  23. Fernandez-Trincado, J. G., Beers, T. C., Queiroz, A. B. A., et al. 2021b, APOGEE-2 Discovery of a Large Population of Relatively High-Metallicity Globular Cluster Debris, ApJ, 918, L37 https://doi.org/10.3847/2041-8213/ac225b
  24. Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, Gaia Data Release 2. Summary of the contents and survey properties, A&A, 616, A1 https://doi.org/10.1051/0004-6361/201833051
  25. Gustafsson, B., Edvardsson, B., Eriksson, K., et al. 2008, A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties, A&A, 486, 951 https://doi.org/10.1051/0004-6361:200809724
  26. Helmi, A., Babusiaux, C., Koppelman, H. H., et al. 2018, The merger that led to the formation of the Milky Way's inner stellar halo and thick disk, NATURE, 563, 85 https://doi.org/10.1038/s41586-018-0625-x
  27. Hill, V., Plez, B., Cayrel, R., et al. 2002, First stars. I. The extreme r-element rich, iron-poor halo giant CS 31082-001. Implications for the r-process site(s) and radioactive cosmochronology, A&A, 387, 560 https://doi.org/10.1051/0004-6361:20020434
  28. Horta, D., Mackereth, J. T., Schiavon, R. P., et al. 2021, The contribution of N-rich stars to the Galactic stellar halo using APOGEE red giants, MNRAS, 500, 5462
  29. Kayser, A., Hilker, M., Grebel, E. K., & Willemsen, P. G. 2008, Comparing CN and CH line strengths in a homogeneous spectroscopic sample of 8 Galactic globular clusters, A&A, 486, 437 https://doi.org/10.1051/0004-6361:200809446
  30. Koch, A., Grebel, E. K., & Martell, S. L. 2019, Purveyors of fine halos: Re-assessing globular cluster contributions to the Milky Way halo buildup with SDSS-IV, A&A, 625, A75 https://doi.org/10.1051/0004-6361/201834825
  31. Koppelman, H. H., Helmi, A., Massari, D., Price-Whelan, A. M., & Starkenburg, T. K. 2019, Multiple retrograde substructures in the Galactic halo: A shattered view of Galactic history, A&A, 631, L9 https://doi.org/10.1051/0004-6361/201936738
  32. Kupka, F., Piskunov, N., Ryabchikova, T. A., Stempels, H. C., & Weiss, W. W. 1999, VALD-2: Progress of the Vienna Atomic Line Data Base, A&AS, 138, 119 https://doi.org/10.1051/aas:1999267
  33. Lardo, C., Milone, A. P., Marino, A. F., et al. 2012, C and N abundances of main sequence and subgiant branch stars in NGC 1851, A&A, 541, A141 https://doi.org/10.1051/0004-6361/201118763
  34. Lardo, C., Battaglia, G., Pancino, E., et al. 2016, Carbon and nitrogen abundances of individual stars in the Sculptor dwarf spheroidal galaxy, A&A, 585, A70 https://doi.org/10.1051/0004-6361/201527391
  35. Lee, Y. S., Beers, T. C., Sivarani, T., et al. 2008a, The SEGUE Stellar Parameter Pipeline. I. Description and Comparison of Individual Methods, AJ, 136, 2022 https://doi.org/10.1088/0004-6256/136/5/2022
  36. Lee, Y. S., Beers, T. C., Sivarani, T., et al. 2008b, The SEGUE Stellar Parameter Pipeline. II. Validation with Galactic Globular and Open Clusters, AJ, 136, 2050 https://doi.org/10.1088/0004-6256/136/5/2050
  37. Lee, Y. S., Beers, T. C., Allende Prieto, C., et al. 2011, The SEGUE Stellar Parameter Pipeline. V. Estimation of Alpha-element Abundance Ratios from Low-resolution SDSS/SEGUE Stellar Spectra, AJ, 141, 90 https://doi.org/10.1088/0004-6256/141/3/90
  38. Lee, Y. S., Beers, T. C., Masseron, T., et al. 2013, Carbon-enhanced Metal-poor Stars in SDSS/SEGUE. I. Carbon Abundance Estimation and Frequency of CEMP Stars, AJ, 146, 132 https://doi.org/10.1088/0004-6256/146/5/132
  39. Lee, Y. S., Beers, T. C., Carlin, J. L., et al. 2015, Application of the SEGUE Stellar Parameter Pipeline to LAMOST Stellar Spectra, AJ, 150, 187 https://doi.org/10.1088/0004-6256/150/6/187
  40. Luo, A.-L., Zhao, Y.-H., Zhao, G., & et al. 2019, VizieR Online Data Catalog: LAMOST DR5 catalogs (Luo+, 2019), VizieR Online Data Catalog, V/164
  41. Majewski, S. R., Schiavon, R. P., Frinchaboy, P. M., et al. 2017, The Apache Point Observatory Galactic Evolution Experiment (APOGEE), AJ, 154, 94 https://doi.org/10.3847/1538-3881/aa784d
  42. Markwardt, C. B. 2009, Non-linear Least-squares Fitting in IDL with MPFIT, Astronomical Data Analysis Software and Systems XVIII, 411, 251
  43. Martell, S. L., & Grebel, E. K. 2010, Light-element abundance variations in the Milky Way halo, A&A, 519, A14 https://doi.org/10.1051/0004-6361/201014135
  44. Martell, S. L., Smolinski, J. P., Beers, T. C., & Grebel, E. K. 2011, Building the Galactic halo from globular clusters: evidence from chemically unusual red giants, A&A, 534, A136 https://doi.org/10.1051/0004-6361/201117644
  45. Martell, S. L., Shetrone, M. D., Lucatello, S., et al. 2016, Chemical Tagging in the SDSS-III/APOGEE Survey: New Identifications of Halo Stars with Globular Cluster Origins, ApJ, 825, 146 https://doi.org/10.3847/0004-637X/825/2/146
  46. Masseron, T., Plez, B., Primas, F., Van Eck, S., & Jorissen, A. 2006, A VLT-UVES spectrscopic analysis of C-rich Fe-poor stars, PhD thesis, Observatoire de Paris, France
  47. Masseron, T., Plez, B., Van Eck, S., et al. 2014, CH in stellar atmospheres: an extensive linelist, A&A, 571, A47 https://doi.org/10.1051/0004-6361/201423956
  48. Martin, Nicolas F., Venn, Kim A., Aguado, David S., et al. 2022, A stellar stream remnant of a globular cluster below the metallicity floor, NATURE, 601, 45 https://doi.org/10.1038/s41586-021-04162-2
  49. Myeong, G. C., Evans, N. W., Belokurov, V., Sanders, J. L., & Koposov, S. E. 2018, Discovery of new retrograde substructures: the shards of ω Centauri ?, MNRAS, 478, 5449 https://doi.org/10.1093/mnras/sty1403
  50. Myeong, G. C., Vasiliev, E., Iorio, G., Evans, N. W., & Belokurov, V. 2019, Evidence for two early accretion events that built the Milky Way stellar halo, MNRAS, 488, 1235 https://doi.org/10.1093/mnras/stz1770
  51. Naidu, R. P., Conroy, C., Bonaca, A., et al. 2020, Evidence from the H3 Survey That the Stellar Halo Is Entirely Comprised of Substructure, ApJ, 901, 48 https://doi.org/10.3847/1538-4357/abaef4
  52. Plez, B. 2012, Turbospectrum: Code for spectral synthesis, Astrophysics Source Code Library, ascl:1205.004
  53. Re Fiorentin, P., Bailer-Jones, C. A. L., Lee, Y. S., et al. 2007, Estimation of stellar atmospheric parameters from SDSS/SEGUE spectra, A&A, 467, 1373 https://doi.org/10.1051/0004-6361:20077334
  54. Schiavon, R. P., Zamora, O., Carrera, R., et al. 2017, Chemical tagging with APOGEE: discovery of a large population of N-rich stars in the inner Galaxy, MNRAS, 465, 501 https://doi.org/10.1093/mnras/stw2162
  55. Smith, V. V., Cunha, K., Shetrone, M. D., et al. 2013, Chemical Abundances in Field Red Giants from High-resolution H-band Spectra Using the APOGEE Spectral Linelist, ApJ, 765, 16 https://doi.org/10.1088/0004-637X/765/1/16
  56. Smolinski, J. P., Lee, Y. S., Beers, T. C., et al. 2011, The SEGUE Stellar Parameter Pipeline. IV. Validation with an Extended Sample of Galactic Globular and Open Clusters, AJ, 141, 89 https://doi.org/10.1088/0004-6256/141/3/89
  57. Smolinski, J. P., Martell, S. L., Beers, T. C., & Lee, Y. S. 2011b, A Survey of CN and CH Variations in Galactic Globular Clusters from Sloan Digital Sky Survey Spectroscopy, AJ, 142, 126 https://doi.org/10.1088/0004-6256/142/4/126
  58. Suda, T., Katsuta, Y., Yamada, S., et al. 2008, Stellar Abundances for the Galactic Archeology (SAGA) Database - Compilation of the Characteristics of Known Extremely Metal-Poor Stars, PASJ, 60, 1159 https://doi.org/10.1093/pasj/60.5.1159
  59. Tang, B., Fern'andez-Trincado, J. G., Liu, C., et al. 2020, On the Chemical and Kinematic Consistency between N-rich Metal-poor Field Stars and Enriched Populations in Globular Clusters, ApJ, 891, 28 https://doi.org/10.3847/1538-4357/ab7233
  60. Yanny, B., Rockosi, C., Newberg, H. J., et al. 2009, SEGUE: A Spectroscopic Survey of 240,000 Stars with g = 14-20, AJ, 137, 4377 https://doi.org/10.1088/0004-6256/137/5/4377
  61. York, D. G., Adelman, J., Anderson, J. E., et al. 2000, The Sloan Digital Sky Survey: Technical Summary, AJ, 120, 1579 https://doi.org/10.1086/301513