DOI QR코드

DOI QR Code

김치에서 분리한 Lactococcus lactis 균주의 항리스테리아 활성 및 부분 정제된 박테리오신의 특성

Anti-listeria Activity of Lactococcus lactis Strains Isolated from Kimchi and Characteristics of Partially Purified Bacteriocins

  • Son, Na-Yeon (Department of Food Science and Technology, Korea National University of Transportation) ;
  • Kim, Tae-Woon (Technology Innovation Research Division, World Institute of Kimchi) ;
  • Yuk, Hyun-Gyun (Department of Food Science and Technology, Korea National University of Transportation)
  • 투고 : 2022.01.11
  • 심사 : 2022.03.04
  • 발행 : 2022.04.30

초록

L. monocytogenes는 그람양성의 대표적인 식중독균 중 하나로 치명률이 대단히 높으며 대부분의 식중독균과 달리 저온에서도 생육 가능하여 냉장 보관된 식품에서도 식중독을 발생시킬 수 있다. 이에 따라 식품의 제조, 가공 및 유통과정에서 다양한 물리, 화학적 방법이 사용되고 있지만, 이러한 방법은 식품의 품질 변화를 초래하고 합성보존제에 대한 소비자의 인식 등으로 적용에 한계가 있을 수 있다. 따라서 본 연구에서는 식품의 미생물적 안전성 향상을 위해 김치에서 분리된 LAB의 항리스테리아 활성을 분석하여 천연항균제로서 활용 가능성을 평가하였다. Agar overlay 방법으로 김치에서 분리된 총 36종(Lactobacillus속, Weissella속, Lactobacillus속, Lactococcus속)의 유산균에 대한 항리스테리아 활성을 분석한 결과 L. lactis NJ 1-10과 NJ 1-16이 가장 항리스테리아 활성이 높은 것으로 나타났다. 항리스테리아 활성을 정량적으로 분석하기 위해 NJ 1-10과 NJ 1-16을 각각 L. monocytogenes와 BHI broth에서 공동 배양한 결과, 20시간 만에 L. monocytogenes를 3.0 log CFU/mL 감소시켜 검출한계 이하까지 균수가 감소하였다. 두 LAB균주 모두 24개의 L. monocytogenes 혈청형에 대해 저해환의 크기는 조금씩 다르지만 모두 항리스테리아 활성을 보였다. NJ 1-10과 NJ 1-16의 부분 정제된 박테리오신 모두 proteinase-K 처리에서 항리스테리아 활성이 소실되어 항균물질이 단백질의 박테리오신임을 확인하였다. 부분 정제된 박테리오신의 열에 대한 안정성은 NJ 1-10과 NJ 1-16 모두 60℃ 및 80℃에서 비교적 안정했지만, 100℃에서 60분과 121℃에서 15분 처리로 활성이 완전히 소실되었다. pH의 안정성의 경우, pH 4.01에서 활성이 가장 안정하였고 pH가 높아질수록 그 활성이 감소하는 경향을 나타내었으나, 활성이 완전하게 소실되지는 않았고, 유기용매 안정성은 acetone, ethanol, methanol에 비교적 안정한 활성을 보였으나 chloroform 처리 시 활성의 정도가 감소하였지만 완전히 소실되지는 않았다. 따라서 본 연구의 결과, NJ 1-10과 NJ 1-16이 생산하는 박테리오신은 L. monocytogenes를 효과적으로 저감시켰으며, 열, pH, 유기용매에 대해 비교적 안정하여 식품에 존재하는 리스테리아균 제어를 위한 천연항균제로서의 잠재적인 가능성이 있음을 확인하였다.

Listeria monocytogenes (L. monocytogenes) is one of gram-positive foodborne pathogens with a very high fatality rate. Unlike most foodborne pathogens, L. monocytogenes is capable of growing at low temperatures, such as in refrigerated foods. Thus, various physical and chemical prevention methods are used in the manufacturing, processing and distribution of food. However, there are limitations to the methods such as possible changes to the food quality and the consumer awareness of synthetic preservatives. Thus, the aim of this study was to evaluate the anti-listeria activity of lactic acid bacteria (LAB) isolated from kimchi and characterize the bacteriocin produced by Lactococcuslactis which is one of isolated strains from kimchi. The analysis on the anti-listeria activity of a total of 36 species (Lactobacillus, Weissella, Lactobacillus, and Lactococcus) isolated from kimchi by the agar overlay method revealed that L. lactis NJ 1-10 and NJ 1-16 had the highest anti-listeria activity. For quantitatively analysis on the anti-listeria activity, NJ 1-10 and NJ 1-16 were co-cultured with L. monocytogenes in Brain Heat Infusion (BHI) broth, respectively. As a result, L. monocytogenes was reduced by 3.0 log CFU/mL in 20 h, lowering the number of bacteria to below the detection limit. Both LAB strains showed anti-listeria activity against 24 serotypes of L. monocytogenes, although the sizes of clear zone was slightly different. No clear zone was observed when the supernatants of both LAB cultures were treated with proteinase-K, indicating that their anti-listerial activities might be due to the production of bacteriocins. Heat stability of the partially purified bacteriocins of NJ 1-10 and NJ 1-16 was relatively stable at 60℃ and 80℃. Yet, their anti-listeria activities were completely lost by 60 min of treatment at 100℃ and 15 min of treatment at 121℃. The analysis on the pH stability showed that their anti-listeria activities were the most stable at pH 4.01, and decreased with the increasing pH value, yet, was not completely lost. Partially purified bacteriocins showed relatively stable anti-listeria activities in acetone, ethanol, and methanol, but their activities were reduced after chloroform treatment, yet was not completely lost. Conclusively, this study revealed that the bacteriocins produced by NJ 1-10 and NJ 1-16 effectively reduced L. monocytogenes, and that they were relatively stable against heat, pH, and organic solvents, therefore implying their potential as a natural antibacterial substance for controlling L. monocytogenes in food.

키워드

과제정보

이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(No. 2021R1A6A1A03046418)이며, 본 연구에 사용된 모든 김치 유래 LAB 균주는 세계김치연구소로부터 제공 받았으며, 이에 감사드립니다.

참고문헌

  1. Hong, Y.K., Yoon, W.B., Huang, L., Yuk, H.G., Predictive modeling for growth of non-and cold-adapted Listeria monocytogenes on fresh-cut cantaloupe at different storage temperatures. J. Food Sci., 79, M1168-M1174 (2014). https://doi.org/10.1111/1750-3841.12468
  2. Jin, Y.h., Ryu, S.H., Kwak, J.E., Kim, R.R., Choi, Y.H., Lee, M.S., Hwang, I.S., Prevalence, virulence characteristics and antimicrobial resistance of Listeria monocytogenes isolated from salmon products. Korean J. Food Sci. Technol., 53, 495-500 (2021). https://doi.org/10.9721/KJFST.2021.53.4.495
  3. Han, S.R., Hyeon, J.Y., Kim, H.Y., Park, J.S., Heo, S., Shin, H.C., Seo, K.H., Evaluation of conventional culture methods and validation of immunoassays for rapid detection of Listeria monocytogenes in dairy and processed foods. Food Sci. Anim. Resour., 28, 616-622 (2008). https://doi.org/10.5851/kosfa.2008.28.5.616
  4. Kim, S.R., Kim, W.I., Yoon, J.H., Jeong, D.Y., Choi, S.Y., Hwang, I.J., Rajalingam, N., Growth survival of Listeria monocytogenes in enoki mushroom (Flammulina velutipes) at different temperature and antilisterial effect of organic acids. J. Food Hyg. Saf., 35, 630-636 (2020). https://doi.org/10.13103/JFHS.2020.35.6.630
  5. Hong, S.W., Bae, H.J., Chang, J.H., Kim, S.Y., Choi, E.Y., Park, B.Y., Kun, S.C., Oh, M.H., Isolation and identification of bacteriocin-producing lactic acid bacteria. Korean J. Dairy Sci. Technol., 31, 153-159 (2013).
  6. Ryu, B.H., Sim, G.S., Choi, H.Y., Ha, W.K., A study on the natural preservative(Lactobacillus-fermented antimicrobial solution), fermented with plant originated lactic acid bacteria. Food Sci. Ind., 44, 45-51 (2011). https://doi.org/10.23093/FSI.2011.44.2.45
  7. Kim, S.Y., Kim, J.D., Son, J.S., Lee, S.K., Park, K.J., Park, M.S., Biochemical and molecular identification of antibacterial lactic acid bacteria isolated from kimchi. Korean J. Food Sci. Technol., 43, 446-452 (2011). https://doi.org/10.9721/KJFST.2011.43.4.446
  8. Sharma, B.R., Halami, P.M., Tamang, J.P., Novel pathways in bacteriocin synthesis by lactic acid bacteria with special reference to ethnic fermented foods. J. Food Sci. Biotechnol., 31, 1-16 (2021). https://doi.org/10.3969/j.issn.1673-1689.2012.01.001
  9. Hyun, I.K., Kim, M.Y., Kim, S.Y., Lee, J.S., Choi, A.R., Kang, S.S., Functional properties of yogurt fermented by bacteriocin-producing Pediococcus acidilactici. J. Dairy Sci. Biotechnol., 38, 154-160 (2020). https://doi.org/10.22424/jdsb.2020.38.3.154
  10. Jung, S.Y., Choi, J.I., Joo, W.H., Suh, H.H., Na, A.S., Cho, Y.K., Moon, J.Y., Ha, K.C., Paik, D.H., Kang, D.O., Characterization and purification of the bacteriocin produced by Bacillus licheniformis isolated from soybean sauce. J. Life Sci., 19, 994-1002 (2009). https://doi.org/10.5352/JLS.2009.19.7.994
  11. Jung, D.S., Lee, Y.K., Development of fermented isotonic beverage with anticariogenic activity using bacteriocin-producing lactic acid bacteria. J. Korean Soc. Food Sci. Nutr., 31, 399-404 (2002). https://doi.org/10.3746/JKFN.2002.31.3.399
  12. Chung, J.H., Bae, Y.S., Kim, Y.J., Lee, J.H., Characteristic of bacteriocin produced by a Lactobacillus plantarum strain isolated from kimchi. Kor. J. Microbiol. Biotechnol., 4, 481-485 (2010).
  13. Ham, S.H., Choi, N.S., Moon, J.Y., Baek, S.H., Lee, S.M., Kang, D.O., Characterization of bacteriocin produced from isolated strain of Bacillus sp. J. Life Sci., 27, 202-210 (2017). https://doi.org/10.5352/JLS.2017.27.2.202
  14. Lee, K.H., Park, J.Y., Jeong, S.J., Kwon, G.H., Lee, H.J., Chang, H.C., Chung, D.K., Lee, J.H., Kim, J.H., Characterization of paraplantaricin C7, a novel bacteriocin produced by Lactobacillus paraplantarum C7 isolated from kimchi. J. Microbiol. Biotechnol., 17, 287-296 (2007).
  15. Han, E.J., Lee, N.K., Choi, S.Y., Paik, H.D., Bacteriocin KC24 produced by Lactococcus lactis KC24 from kimchi and its antilisterial effect in UHT milk. J. Dairy Sci., 96, 101-104 (2013). https://doi.org/10.3168/jds.2012-5884
  16. Chua, M.L., Aung, K.T., Hapuarachchi, H.C., Lee, P.S.V., Lim, P.Y., Kang, J.S.L., Ng, Y., Yap, H.M., Yuk, H.G., Gutierrez, Ng, L.C., Microbial survey of ready-to-eat salad ingredients sold at retail reveals the occurrence and the persistence of Listeria monocytogenes sequence types 2 and 87 in pre-packed smoked salmon. BMC Microbiol., 17, 46 (2017). https://doi.org/10.1186/s12866-017-0956-z
  17. Ho, V.T.T., Dong, A., Lo, R., Turner, M.S., Isolation and evaluation of anti-Listeria Lactococcus lactis from vegetal sources. Methods. Mol. Biol., 2220, 243-257 (2021). https://doi.org/10.1007/978-1-0716-0982-8_19
  18. Iulietto, M.F., Sechi, P., Cella, E., Grispoldi, L., Ceccarelli, M., Al Ani, A. R., Isiklar, B., M. Anuk, Haluk., Cenci-Goga, B.T., Inhibition of Listeria monocytogenes by a formulation of selected dairy starter cultures and probiotics in an in vitro model. Ital. J. Anim. Sci., 17(4), 845-850 (2018). https://doi.org/10.1080/1828051X.2018.1450099
  19. Nho, S.W., Abdelhamed, H., Reddy, S., Karsi, A., Lawrence, M.L., Identification of high-risk Listeria monocytogenes serotypes in lineage I (serotype 1/2a, 1/2c, 3a and 3c) using multiplex PCR. J. Appl. Microbiol., 119, 845-852 (2015). https://doi.org/10.1111/jam.12876
  20. Kim, S.H., Seo, K.H., Detection methods, occurrence, and control of Listeria monocytogenes in domestic and foreign animal products. Safe Food., 13, 14-23 (2018).
  21. Aymerich, T., Rodriguez, M., Garriga, M., Bover-Cid, S., Assessment of the bioprotective potential of lactic acid bacteria against Listeria monocytogenes on vacuum-packed cold-smoked salmon stored at 8oC. Food Microbiol., 83, 64-70 (2019). https://doi.org/10.1016/j.fm.2019.04.011
  22. Jung, S.Y., Park, C.S., Choi, N.S., Yang, H.J., Kim, C.Y., Yoon, B.D., Kim, M.S., Kang, D.O., Ryu, Y.W., Characteristics of bacteriocin produced by Lactococcus lactis ET45 isolated from kimchi. Korean J. Microbiol., 47, 74-80 (2011).
  23. Seo, S.J., Yang, J.M., Moon, G.S., Characterization of the bacteriocin from Enterococcus faecium CJNU 2008. J. Food Hyg. Saf., 33, 516-520 (2018). https://doi.org/10.13103/JFHS.2018.33.6.516
  24. Pujato, S.A., del L Quiberoni, A., Candioti, M.C., Reinheimer, J.A., Guglielmotti, D.M., Leuconostoc citreum MB1 as biocontrol agent of Listeria monocytogenes in milk. J. Dairy Res., 81, 137-145 (2014). https://doi.org/10.1017/S002202991300068X
  25. Buncic, S., Avery, S.M., Rocourt, J., Dimitrijevic, M., Can food-related environmental factors induce different behaviour in two key serovars, 4b and 1/2a, of Listeria monocytogenes? Int. J. Food Microbiol., 65, 201-212 (2001). https://doi.org/10.1016/S0168-1605(00)00524-9
  26. Henderson, L.O., Erazo Flores, B.J., Skeens, J., Kent, D., Murphy, S.I., Wiedmann, M., Guariglia-Oropeza, V., Nevertheless, she resisted-role of the environment on Listeria monocytogenes sensitivity to nisin treatment in a laboratory cheese model. Front. microbiol., 11, 635 (2020). https://doi.org/10.3389/fmicb.2020.00635
  27. Dimitrijevic, M., Teodorovic, V., Baltic, M.Z., Karabasil, N., Different sensitivity of various serotypes of Listeria monocytogenes to lactic acid bacteria bacteriocins. Acta veterinaria., 54, 201-208 (2004). https://doi.org/10.2298/AVB0403201D
  28. Jun, L.S., Jang, S.S., Kang, D.K., Probiotic properties of Lactobacillus salivarius CPM-7 isolated from chicken feces. Korean. J. Microbiol. Biotechnol., 35, 98-103 (2007).
  29. Chang, J.Y., Lee, H.H., Kim, I.C., Chang, H.C., Characterization of a bacteriocin produced by Bacillus licheniformis cy2. J. Korean Soc. Food Sci. Nutr., 30, 410-414 (2001).
  30. Jung, S.E., Kim, S.H., Probiotic properties of lactic acid bacteria isolated from commercial raw makgeolli. Korean J. Food Sci. Technol., 47, 44-50 (2015). https://doi.org/10.9721/KJFST.2015.47.1.44
  31. Shin, Y.R., Lim, K.B., Chae, J.P., Kang, D.K., Characterization of anti-listerial substance produced by Lactobacillus salivarius LCH1227. Food Sci. Anim. Resour., 31, 609-616 (2011). https://doi.org/10.5851/kosfa.2011.31.4.609
  32. Lee, K.H., Lee, J.H., Characterization of the bacteriocin produced by a Leuconostoc mesenteroides strain inhibiting the growth of Lactobacillus sakei. Korean J. Microbiol. Biotechnol., 39, 390-396 (2011).
  33. Vaughan, E.E., Daly, C., Fitzgerald, G.F., Identification and characterization of helveticin V-I 829, a bacteriocin produced by Lactobacillus helveticus 1829. J. Appl. Microbiol., 73, 299-308 (1992).
  34. Shin, Y.R., Lim, K.B., Chae, J.P., Kang, D.K., Characterization of anti-listerial substance produced by Lactobacillus salivarius LCH1227. Food Sci. Anim. Resour., 31, 609-616 (2011). https://doi.org/10.5851/kosfa.2011.31.4.609
  35. Park, Y.J., Isolation and characterization of kimchi lactic acid showing antibacterial activity. J. Hum Ecol., 26, 547-558 (2017).
  36. Lee, J.Y., Choi, N.S., Chun, S.S., Moon, J.Y., Kang, D.O., Purification and characterization of the bacteriocin produced by Lactococcus sp. KD 28 isolated from kimchi. J. Life Sci., 47, 74-80 (2015).
  37. Yuk, H.G., Lee, S.C., Hwang, Y.I., Recovery yields of protopectinase depending on treatments of organic solvents. J. Appl. Biol. Chem., 40, 107-111 (1997).
  38. Pasteris, S.E., Pingitore, E.V., Ale, C.E., Nader-Macias, M.E.F., Characterization of a bacteriocin produced by Lactococcus lactis subsp. lactis CRL 1584 isolated from a Lithobates catesbeianus hatchery. World J. Microbiol. Biotechnol., 30, 1053-1062 (2014). https://doi.org/10.1007/s11274-013-1524-9
  39. Kang, T.J., (2009 August 5). Efficacy and use of lactic acid bacteria. Retrieved from http://bric.postech.ac.kr/webzine/
  40. Kim, J.H., Lee, E.S., Kim, B.M., Ham, J.S., Oh, M.H., Evaluation of stability and antimicrobial properties for a bacteriocin from a newly isolated Lactobacillus gasseri G2. Food Eng. Prog., 24, 327-335 (2020). https://doi.org/10.13050/foodengprog.2020.24.4.327
  41. Kim, E.J., Kim, K.M., Han, H.K., Kim, Y.H., Kwon, K.S., Bea D.H., Selection and characteristics of bacteriocin-producing microorganism to utilize in anti-bacterial rice brain protein film production. J. Appl. Biol. Chem., 46, 285-290 (2003).