Applications of Polyhedral Finite Elements

다면체 유한요소의 활용

  • 손동우 (한국해양대학교 기계공학부) ;
  • 김현규 (서울과학기술대학교 기계.자동차공학과)
  • Published : 2022.03.13

Abstract

Keywords

References

  1. Warren, J. (1996) Barycentric coordinates for convex polytopes, Advances in Computational Mathematics, 6, 97-108. https://doi.org/10.1007/BF02127699
  2. Floater, M.S., Kos, G., Reimers, M. (2005) Mean value coordinates in 3D, Computer Aided Geometric Design, 22(7), 623-631. https://doi.org/10.1016/j.cagd.2005.06.004
  3. Hormann, K., Sukumar, N. (2008) Maximum entropy coordinates for arbitrary polytopes, Computer Graphics Forum, 27(5), 1513-1520. https://doi.org/10.1111/j.1467-8659.2008.01292.x
  4. Martin, S., Kaufmann, P., Botsch, M., Wicke, M., Gross, M. (2008) Polyhedral finite elements using harmonic basis functions, Computer Graphics Forum, 27(5), 1521-1529. https://doi.org/10.1111/j.1467-8659.2008.01293.x
  5. Rashid, M.M., Gullett, P.M. (2000) On a finite element method with variable element topology, Computer Methods in Applied Mechanics and Engineering, 190(11-12), 1509-1527. https://doi.org/10.1016/S0045-7825(00)00175-4
  6. Idelsohn, S.R., Onate, E., Calvo, N., Del Pin, F. (2003) The meshless finite element method, International Journal for Numerical Methods in Engineering, 58(6), 893-912. https://doi.org/10.1002/nme.798
  7. Ghosh, S., Moorthy, S. (2004) Three dimensional voronoi cell finite element model for microstructures with ellipsoidal heterogeneties, Computational Mechanics, 34, 510-531. https://doi.org/10.1007/s00466-004-0598-5
  8. Bishop, J.E. (2014) A displacement-based finite element formulation for general polyhedra using harmonic shape functions, International Journal for Numerical Methods in Engineering, 97(1), 1-31. https://doi.org/10.1002/nme.4562
  9. Rashid, M.M., Selimotic, M. (2006) A three-dimensional finite element method with arbitrary polyhedral elements, International Journal for Numerical Methods in Engineering, 67(2), 226-252. https://doi.org/10.1002/nme.1625
  10. Kim, H.-G., Sohn, D. (2015) A new finite element approach for solving three-dimensional problems using trimmed hexahedral elements, International Journal for Numerical Methods in Engineering, 102(9), 1527-1553. https://doi.org/10.1002/nme.4850
  11. Nguyen-Hoang, S., Sohn, D., Kim, H.-G. (2017) A new polyhedral element for the analysis of hexahedral-dominant finite element models and its application to nonlinear solid mechanics problems, Computer Methods in Applied Mechanics and Engineering, 324, 248-277. https://doi.org/10.1016/j.cma.2017.06.014
  12. Kim, H.-Y., Kim, H.-G. (2020) Efficient isoparametric trimmed-hexahedral elements with explicit shape functions, Computer Methods in Applied Mechanics and Engineering, 372, 113316. https://doi.org/10.1016/j.cma.2020.113316
  13. Kim, H.-Y., Kim, H.-G. (2021) A novel adaptive mesh refinement scheme for the simulation of phase-field fracture using trimmed hexahedral meshes, International Journal for Numerical Methods in Engineering, 122(6), 1493-1512. https://doi.org/10.1002/nme.6587
  14. Lorensen, W.E., Cline, H.E. (1987) Marching cubes: A high resolution 3D surface construction algorithm, SIGGRAPH '87: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, 163-169.
  15. Sohn, D., Han, J., Cho, Y.-S., Im, S. (2013) A finite element scheme with the aid of a new carving technique combined with smoothed integration, Computer Methods in Applied Mechanics and Engineering, 254, 42-60. https://doi.org/10.1016/j.cma.2012.10.014
  16. Sohn, D., Jin, S. (2015) Polyhedral elements with strain smoothing for coupling hexahedral meshes at arbitrary nonmatching interfaces, Computer Methods in Applied Mechanics and Engineering, 293, 92-113. https://doi.org/10.1016/j.cma.2015.04.007
  17. Lee, C., Kim, H., Im, S. (2017) Polyhedral elements by means of node/edge-based smoothed finite element method, International Journal for Numerical Methods in Engineering, 110(11), 1069-1100. https://doi.org/10.1002/nme.5449
  18. Lee, C., Kim, H., Kim, J. Im, S. (2017) Polyhedral elements using an edge-based smoothed finite element method for nonlinear elastic deformations of compressible and nearly incompressible materials, Computational Mechanics, 60, 659-682. https://doi.org/10.1007/s00466-017-1433-0
  19. Liu, G.R., Dai, K.Y., Nguyen, T.T. (2007) A smoothed finite element method for mechanics problems, Computational Mechanics, 39, 859-877. https://doi.org/10.1007/s00466-006-0075-4
  20. Sohn, D., Cho, Y.-S., Im, S. (2012) A novel scheme to generate meshes with hexahedral elements and poly-pyramid elements: The carving technique, Computer Methods in Applied Mechanics and Engineering, 201-204, 208-227. https://doi.org/10.1016/j.cma.2011.09.002
  21. Kim, S., Sohn, D., Im, S. (2019) Construction of polyhedral finite element meshes based upon marching cube algorithm, Advances in Engineering Software, 128, 98-112. https://doi.org/10.1016/j.advengsoft.2018.11.014
  22. Sohn, D. (2018) Periodic mesh generation and homogenization of inclusion-reinforced composites using an element-carving technique with local mesh refinement, Composite Structures, 185, 65-80. https://doi.org/10.1016/j.compstruct.2017.10.088
  23. Sohn, D., Park, J.Y., Cho, Y.-S., Lim, J.H., Lee, H. (2014) Periodic mesh generation for composite structures using polyhedral finite elements, Journal of the Computational Structural Engineering Institute of Korea, 27(4), 239-245. https://doi.org/10.7734/COSEIK.2014.27.4.239
  24. Kim, H.-Y., Kim, H.-G. (2021) A hexahedral-dominant FE meshing technique using trimmed hexahedral elements preserving sharp edges and corners, Engineering with Computers, https://doi.org/10.1007/s00366-021-01526-0.
  25. Nguyen, S.H., Kim, H.-G. (2019) Level set based shape optimization using trimmed hexahedral meshes, Computer Methods in Applied Mechanics and Engineering, 345, 555-583. https://doi.org/10.1016/j.cma.2018.11.006
  26. Nguyen, S.H., Kim, H.-G. (2020) Stress-constrained shape and topology optimization with the level set method using trimmed hexahedral meshes, Computer Methods in Applied Mechanics and Engineering, 366, 113061. https://doi.org/10.1016/j.cma.2020.113061
  27. Nguyen, S.H., Sohn, D., Kim, H.-G. (2022) A novel hr-adaptive mesh refinement scheme for stress-constrained shape and topology optimization using level-set-based trimmed meshes, Structural and Multidisciplinary Optimization, 65, 71. https://doi.org/10.1007/s00158-021-03132-6
  28. Jin, S., Sohn, D., Im, S. (2016) Node-to-node scheme for three-dimensional contact mechanics using polyhedral type variable-node elements, Computer Methods in Applied Mechanics and Engineering, 304, 217-242. https://doi.org/10.1016/j.cma.2016.02.019
  29. Lim, H.-H., Kim, H.-Y., Kim, H.-G. (2021) Development of an Abaqus User Element (UEL) subroutine for trimmed hexahedral elements, Transactions of the Korean Society of Mechanical Engineers A, 45(4), 329-338. https://doi.org/10.3795/KSME-A.2021.45.4.329